Class / Patent application number | Description | Number of patent applications / Date published |
570246000 | Preparing by addition of elemental halogen, interhalogen compound, or hydrogen halide to carbon to carbon unsaturation | 6 |
20090054709 | Process For Producing N-Propyl Bromide or Other Aliphatic Bromides - A process for the production of an aliphatic bromide in which the bromine atom is attached to a terminal carbon atom, which process comprises continuously feeding olefin having a terminal double bond, gaseous hydrogen bromide, and a molecular oxygen-containing gas into a liquid phase reaction medium comprised of aliphatic bromide to cause anti-Markovnikov addition of HBr to terminal olefin, the feeds being proportioned and maintained to provide a molar excess of hydrogen bromide relative to terminal olefin in the range of about 1 to about 5 percent, and a molar ratio of molecular oxygen to terminal olefin of less than 0.005. The process is especially suited for production of n-propyl bromide. | 02-26-2009 |
20090306439 | Method and Device for Using Reaction Heat During the Production of 1,2-Dichloroethane - The invention relates to a method for using reaction heat produced by reaction during the production of 1,2-dichloroethane from ethylene and chlorine in a direct chlorination reactor. The chlorine is produced in a sodium chloride electrolysis and the reaction heat, during the formation of 1,2-dichloroethane is used at least partially for the evaporation of NaOH, which is produced during NaCl-electrolysis for producing the required chlorine for direct chlorination, as a coupling product. The invention also relates to a device for carrying out said method, comprising a multi-tube heat exchanger comprising two fixed tubular plates and a NaOH-liquid phase part, and the caustic soda passes through the inside of the tube and 1,2-dichloroethane passes the outside of the tube. The heat exchanger also comprises devices for feeding and distributing the caustic soda in the inside of the tube. | 12-10-2009 |
20160096786 | Method to Improve Halogenation Reactions - In the halogenation reaction of olefin/halo-olefin (i.e., organic), an excess amount of halogen gas (fluorine, chlorine, vaporized bromine and iodine, or their combination) is normally used in order to achieve as complete as possible conversion of the organic. In a conventional process, the excess halogen gas in the off-gas stream is scrubbed by caustic solution which increases the consumption of halogen and generates waste for disposal. The present invention provides a novel process to recover and reuse the excess halogen gas and thus reduce the operating cost of the process. | 04-07-2016 |
570247000 | Catalyst or reaction directing agent utilized | 3 |
20150112104 | Process For Producing Chlorinated Hydrocarbons In The Presence Of A Polyvalent Bismuth Compound - The preparation of chlorinated hydrocarbons by reacting a chlorinated alkane substrate, such as 1,1,1,3-tetrachloropropane, with a source of chlorine, such as chlorine (Cl | 04-23-2015 |
20160023967 | PROCESS FOR THE PRODUCTION OF CHLORINATED ALKANES - Processes for the production of chlorinated alkanes are provided. The present processes comprise dehydrochlorinating one or more trichloroalkanes having from 3-6 carbon atoms and vicinal chlorine atoms, followed by a series of sequential chlorination and/or further dehydrochlorination steps. Because the trichloroalkane is first dehydrochlorinated, rather than being first chlorinated, greater specificity to desired tetra- and pentachloroalkanes can be seen. | 01-28-2016 |
570248000 | Hydrogen halide reactant | 1 |
20150141713 | METHOD FOR PREPARING VINYL CHLORIDE WITH ACETYLENE AND DICHLORETHANE - Provided is a method for preparing vinyl chloride with acetylene and dichlorethane for large-scale industrial production. Acetylene, dichlorethane vapor and hydrogen chloride gas at a molar ratio of 1:(0.3-1.0):(0-0.20) are mixed; the raw mixed gas is preheated; the preheated raw mixed gas passes through a reactor containing a catalyst and reacts; the resultant mixed gas is cooled to 30-50° C. and pressurized to 0.4-1.0 MPa, and then cooled to ambient temperature, and further frozen to −25-15° C. for liquefaction isolation, and unliquefied gas is recycled and reused; liquefied liquid is sent to a rectifying tower for rectification, and vinyl chloride monomers meeting polymerization requirements are obtained. The present invention has the advantages of eliminating mercury contamination completely, simplifying the reactor structure, recycling hydrogen chloride and acetylene, reducing waterwash process, avoiding mass production of waste acid and improving utilization of chlorine. | 05-21-2015 |