Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Preparation by carbonylation

Subclass of:

562 - Organic compounds -- part of the class 532-570 series

562000000 - ORGANIC COMPOUNDS (CLASS 532, SUBCLASS 1)

562400000 - Carboxylic acids and salts thereof

562512000 - Acyclic

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
562519000 Of alcohol or alcoholate 81
562518000 Of aldehyde or ketone 8
562521000 Of hydrocarbon 5
20080269520Process for the Carbonylation of a Conjugated Diene to a Dicarboxylic Acid - A process for the carbonylation of a conjugated diene to a dicarboxylic acid, comprising the steps of (a) contacting a conjugated diene with carbon monoxide and water in the presence of a catalyst system including a source of palladium, a source of an anion and a bidentate phosphine ligand, to obtain a mixture comprising an ethylenically unsaturated acid and reversible diene adducts; (b) separating the obtained reaction mixture into a gaseous stream comprising unreacted conjugated diene and carbon monoxide, a first normally liquid stream comprising at least part of the ethylenically unsaturated acid and the reversible diene adducts, and a second normally liquid stream comprising the catalyst system in admixture with the ethylenically unsaturated acid; (c) recycling the second liquid stream obtained in step (b) to step (a); (d) separating the first liquid product stream obtained in step (b) into a stream comprising the ethylenically unsaturated acid and a stream comprising the reversible diene adducts; and (e) contacting the stream comprising the ethylenically unsaturated acid obtained in step (d) with carbon monoxide and water in the presence of a second catalyst system including a source of palladium, a source of an anion and a bidentate phosphine ligand.10-30-2008
20110218359PREPARATION OF ETHYLENICALLY UNSATURATED CARBOXYLIC SALTS BY CARBOXYLATION OF ALKENES - A process for preparing an alkali metal or alkaline earth metal salt of an α,β-ethylenically unsaturated carboxylic acid, wherein a) an alkene, carbon dioxide and a carboxylation catalyst are converted to an alkene/carbon dioxide/carboxylation catalyst adduct, b) the adduct is decomposed to release the carboxylation catalyst with an auxiliary base to give the auxiliary base salt of the α,β-ethylenically unsaturated carboxylic acid, c) the auxiliary base salt of the α,β-ethylenically unsaturated carboxylic acid is reacted to release the auxiliary base with an alkali metal or alkaline earth metal base to give the alkali metal or alkaline earth metal salt of the α,β-ethylenically unsaturated carboxylic acid. Salts of α,β-ethylenically unsaturated carboxylic acids, such as sodium acrylate in particular, are required in large amounts, for example, for production of water-absorbing resins.09-08-2011
20140296570Hydrocarbon Conversion Process - The invention relates to a process for converting hydrocarbons into products containing aldehydes and/or alcohols. The invention also relates to producing olefins from the aldehyde and alcohol, to polymerizing the olefins, and to equipment useful for these processes.10-02-2014
20150299085HYDROCARBONYLATION OR METHOXYCARBONYLATION OF 1,3-DIENE DERIVATIVES WITH PALLADIUM COMPLEX - The present invention concerns a process of carbonylation of poly-unsaturated diene with high selectivity for the preparation of a β,γ-unsaturated carboxylic acid or ester in the presence of water or alcohol and catalyzed by [PdCl10-22-2015
20140031583OLEFIN CONDITIONING IN A FAST CATALYTIC PYROLYSIS RECYCLE PROCESS - This invention relates to improvements in the fast pyrolysis of biomass. In this invention, olefins are separated from the effluent stream of a pyrolysis reactor and at least a portion of the olefins are treated and the resulting treated stream recycled to the pyrolysis reactor for further conversion to valuable, useful products.01-30-2014
562520000 Of halogenated hydrocarbon 1
20110201841OXIDATIVE MONO-HALOGENATION OF METHANE - Oxidatively halogenate methane by placing a feedstream that comprises methane, a source of halogen, a source of oxygen and, optionally, a source of diluent gas in contact with a first catalyst (e.g. a solid super acid or a solid super base) that has greater selectivity to methyl halide and carbon monoxide than to methylene halide, trihalomethane or carbon tetrahalide. Improve overall selectivity to methyl halide by using a second catalyst that converts at least part of the feedstream to a mixture of methyl halide, methylene halide, trihalomethane, carbon tetrahalide and unreacted oxygen, and placing that mixture in contact with the first catalyst which converts at least a portion of the methylene halide, trihalomethane and carbon tetrahalide to carbon monoxide, hydrogen halide and water.08-18-2011
Entries
DocumentTitleDate
20080287706Method and apparatus for making acetic acid with improved light ends column productivity - An improved apparatus and method of producing acetic acid includes condensing overhead vapor to provide reflux to the light ends column as well as condensing vapor from a central portion of the light ends column to increase capacity. Throughput or load on the light ends column is substantially reduced without compromising product quality.11-20-2008
20080293966Control of impurities in reaction product of rhodium-catalyzed methanol carbonylation - The present invention relates to carbonylation of methanol, methyl acetate, dimethyl ether or mixtures thereof to produce glacial acetic acid, and more specifically to the manufacture of glacial acetic acid by the reaction of methanol, methyl acetate, dimethyl ether or mixtures thereof with carbon monoxide wherein the product glacial acetic acid contains low impurities.11-27-2008
20080293967Control of formic acid impurities in industrial glacial acetic acid - This invention relates to carbonylation of methanol, methyl acetate, dimethyl ether or mixtures thereof to produce glacial acetic acid, and more specifically to the manufacture of glacial acetic acid by the reaction of methanol, methyl acetate dimethyl ether or mixtures thereof with carbon monoxide wherein the product glacial acetic acid contains low formic acid impurities.11-27-2008
20090156859Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation - The present invention relates to carbonylation of methanol, methyl acetate, dimethyl ether or mixtures thereof to produce glacial acetic acid, and more specifically to the manufacture of glacial acetic acid by the reaction of methanol, methyl acetate, dimethyl ether or mixtures thereof with carbon monoxide wherein the product glacial acetic acid contains low impurities.06-18-2009
20090187043Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation - The present invention relates to carbonylation of methanol, methyl acetate, dimethyl ether or mixtures thereof to produce glacial acetic acid, and more specifically to the manufacture of glacial acetic acid by the reaction of methanol, methyl acetate, dimethyl ether or mixtures thereof with carbon monoxide wherein the product glacial acetic acid contains low impurities.07-23-2009
20090209786Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation - The present invention relates to carbonylation of methanol, methyl acetate, dimethyl ether or mixtures thereof to produce glacial acetic acid, and more specifically to the manufacture of glacial acetic acid by the reaction of methanol, methyl acetate, dimethyl ether or mixtures thereof with carbon monoxide wherein the product glacial acetic acid contains low impurities.08-20-2009
20090270650Method and apparatus for carbonylating methanol with acetic acid enriched flash stream - A carbonylation process for producing acetic acid including: (a) carbonylating methanol or its reactive derivatives in the presence of a Group VIII metal catalyst and methyl iodide promoter to produce a liquid reaction mixture including acetic acid, water, methyl acetate and methyl iodide; (b) feeding the liquid reaction mixture at a feed temperature to a flash vessel which is maintained at a reduced pressure; (c) heating the flash vessel while concurrently flashing the reaction mixture to produce a crude product vapor stream, wherein the reaction mixture is selected and the flow rate of the reaction mixture fed to the flash vessel as well as the amount of heat supplied to the flash vessel is controlled such that the temperature of the crude product vapor stream is maintained at a temperature less than 90° F. cooler than the feed temperature of the liquid reaction mixture to the flasher and the concentration of acetic acid in the crude product vapor stream is greater than 70% by weight of the crude product vapor stream.10-29-2009
20100204512PROCESS FOR THE REDUCTION OF ALDEHYDE CONCENTRATION IN A TARGET STREAM - A process for reducing the aldehyde concentration in a target stream of a carbonylation process is disclosed. More specifically, a process for reducing the aldehyde concentration in an internal process stream or feed stream of a carbonylation process is disclosed. In particular, a process in which a target stream comprising a carbonylatable reactant and a first aldehyde concentration is subjected to a reaction comprising a supported catalyst that comprises at least one Group 8 to Group 11 metal at conditions sufficient to reduce the first aldehyde concentration to a second aldehyde concentration is disclosed.08-12-2010
20110021816Acetic anhydride production by way of carbonylation with enhanced reaction and flashing - A method of making acetic anhydride or a mixture of acetic anhydride and acetic acid comprising: (a) catalytically reacting a feedstock containing methyl acetate and/or dimethyl ether with carbon monoxide in the presence of a homogeneous rhodium catalyst and methyl iodide in a reactor vessel which contains a substantially anhydrous liquid reaction mixture including acetic acid, acetic anhydride, methyl acetate and/or dimethyl ether, methyl iodide and the homogeneous catalyst, the reactor vessel being operated at a reactor pressure; (b) withdrawing reaction mixture from the reaction vessel and feeding the withdrawn reaction mixture along with additional carbon monoxide to a pre-flasher/post reactor vessel operated at a reduced pressure below the reactor vessel pressure; (c) venting light ends in the pre-flasher vessel and concurrently consuming methyl acetate and/or dimethyl ether in the pre-flasher/post reactor vessel to produce a pre-flash mixture which is enriched in acetic anhydride and diminished in methyl iodide and methyl acetate and/or dimethyl ether as compared with the reaction mixture; (d) withdrawing the pre-flash reaction mixture from the pre-flasher/post reactor vessel and feeding the pre-flash mixture to a flash vessel; and (e) flashing a crude product stream from the mixture in a flash vessel operated at a pressure substantially below the pressure of the pre-flasher/post reactor vessel.01-27-2011
20110269992Preparation of acetic acid and acetic anhydride - Disclosed is a process for the preparation of acetic acid and acetic anhydride. The process comprises carbonylating dimethyl carbonate. The carbonylation reaction for producing acetic acid is performed in the presence of water, while the carbonylation for producing acetic anhydride is performed essentially in the absence of water.11-03-2011
20120123156COPRODUCTION OF ACETIC ACID AND ACETIC ANHYDRIDE - Disclosed is a process for the coproduction of acetic acid and acetic anhydride by producing in a first carbonylation reactor a carbonylation product mixture containing acetic anhydride, removing the carbonylation mixture from the first carbonylation reactor, contacting the carbonylation mixture with methanol to react with and convert some or all of the acetic anhydride contained in the mixture to acetic acid and methyl acetate, feeding the resulting reaction composition to a second carbonylation reactor and contacting the reaction composition to carbonylation.05-17-2012
20140018570PROCESS FOR PREPARING ACRYLIC ACID FROM ETHYLENE OXIDE AND CARBON MONOXIDE - A process for preparing acrylic acid from ethylene oxide and carbon monoxide, in which ethylene oxide is carbonylated in an aprotic solvent with carbon monoxide in the presence of a cobalt catalyst system to give poly-3-hydroxypropionate, the cobalt content in the poly-3-hydroxypropionate formed is reduced with the aid of water and/or an aqueous solution as a precipitation and/or wash liquid, and the poly-3-hydroxypropionate is subsequently split by thermolysis to give acrylic acid.01-16-2014
20140058131Process For Recovering Permanganate Reducing Compounds From An Acetic Acid Production Process - This invention relates to processes for producing acetic acid and, in particular, to improved processes for recovering permanganate reducing compounds formed during the carbonylation of methanol in the presence of a carbonylation catalyst to produce acetic acid. Alkyl halides are removed or reduced from the recovered permanganate reducing compounds.02-27-2014
20150133685PROCESS TO PRODUCE A DIENE FROM A LACTONE - The invention provides a process for the production of a diene. In the process, a lactone is heated in the presence of a first catalyst system to produce an alkene and carbon dioxide and the alkene is contacted with a second catalyst system to produce an alkyldiene.05-14-2015
20150336868INTEGRATED PROCESS FOR MAKING ACETIC ACID - An integrated process for the production of acetic acid by carbonylating dimethyl ether with synthesis gas to form methyl acetate and unreacted synthesis gas, utilising the unreacted synthesis gas to produce methanol, dehydrating and hydrolysing a mixture of methyl acetate and methanol to produce acetic acid and dimethyl ether and recovering acetic acid therefrom.11-26-2015
20160016878PROCESS - A continuous process for the co-production of acetic acid and acetic anhydride by (a) contacting carbon monoxide with a liquid reaction composition comprising methyl acetate, dimethyl ether or a mixture thereof, a Group VIII metal catalyst, methyl iodide, acetic acid, acetic anhydride, water in a concentration of 0.1 wt % or less, (b) withdrawing liquid reaction composition from the reaction zone and introducing at least a portion of the withdrawn liquid reaction composition into a flash separation zone, and (c) removing from the flash separation zone a vapour fraction comprising acetic anhydride, acetic acid and methyl iodide and a liquid fraction comprising acetic anhydride, and Group VIII metal catalyst in which at least one of the liquid reaction composition and the withdrawn liquid reaction composition introduced into the flash separation zone comprises at least one metal salt selected from salts of Group IA and Group IIA metals and the molar ratio of acetic acid to acetic anhydride in the vapour fraction removed from the flash separation zone is maintained at greater than or equal to 1, preferably greater than or equal to 1.2.01-21-2016
20160137578PROCESSES FOR IMPROVING ACETIC ACID YIELD BY REMOVING IRON - In a process for improving a carbonylation process, iron is removed to maintain an effective Space Time Yield (STY) of the rhodium catalyst of at least 80% of the maximum STY. The process comprises carbonylating methanol in a reactor in a reaction medium comprising water, a rhodium catalyst, methyl iodide and a halide salt, separating a portion of the reaction medium in a flash vessel to form a less volatile stream and a vapor product stream comprising acetic acid, recycling a liquid stream to the reactor, wherein the liquid stream comprises a portion of the less volatile stream and wherein the liquid stream comprises iron, and removing a portion of the iron from the liquid stream to maintain an effective STY of the rhodium catalyst of at least 80% of the maximum STY.05-19-2016
20160137581Processes for Producing Acetic Acid With Decanter Control - A process for producing acetic acid comprising the steps of carbonylating methanol in a reaction medium to form a crude acetic acid product; conveying the crude acetic acid product to a flash vessel at a flash flow rate; flashing the crude acetic acid product to form a first vapor stream comprising acetic acid and a liquid residue stream comprising metal catalyst and halide salt; separating the flashed vapor stream to form a second vapor stream comprising methyl iodide a sidedraw comprising purified acetic acid and water, and a liquid residue stream. The process further comprises the steps of condensing at least a portion of the second vapor stream to form at least one liquid phase and refluxing to the light ends column at least a portion of the at least one liquid phase at a reflux rate. The reflux rate is adjusted based on changes in the flash flow rate.05-19-2016
20160159721PROCESSES FOR PRODUCING AN ACETIC ACID PRODUCT HAVING LOW BUTYL ACETATE CONTENT - A process for producing an acetic acid product having low butyl acetate content via a carbonylation reaction. The carbonylation reaction is carried out at a temperature from 100 to 300° C., a hydrogen partial pressure from 0.3 to 2 atm, and a metal catalyst concentration from 100 to 3000 wppm, based on the weight of the reaction medium. The butyl acetate concentration in the acetic acid product may be controlled by removing acetaldehyde from a stream derived from the reaction medium and/or by adjusting at least one of reaction temperature, hydrogen partial pressure, and metal catalyst concentration.06-09-2016

Patent applications in class Preparation by carbonylation

Patent applications in all subclasses Preparation by carbonylation

Website © 2025 Advameg, Inc.