Entries |
Document | Title | Date |
20090030230 | MIXED OXIDE CATALYSTS FOR THE CATALYTIC GAS-PHASE OXIDATION OF OLEFINS AND PROCESSES FOR PRODUCING THEM - The invention relates to mixed oxide catalysts for the catalytic gas-phase oxidation of olefins and methylated aromatics, processes for producing the catalysts and the reaction with air or oxygen in the presence of inert gases in various ratios at elevated temperatures and pressure to form aldehydes and carboxylic acids. | 01-29-2009 |
20100048943 | PROCESS FOR PRODUCTION OF ISOPHTHALIC ACID - The invention provides a method for producing isophthalic acid, characterized by including subjecting a m-phenylene compound to liquid-phase oxidation reaction by use of a molecular-oxygen-containing gas in the presence of a catalyst at least containing a heavy metal compound and a bromine compound, and hydrous acetic acid having a water content of 1 to 15 mass %, to thereby yield a slurry; regulating the temperature of the slurry to 35 to 140° C., to thereby cause isophthalic acid to precipitate; removing the isophthalic acid through to solid-liquid separation to thereby recover a mother liquor; and recovering the catalyst from the mother liquor through a series of the following steps (1) to (4) for reusing at least a portion of the catalyst in the liquid-phase oxidation reaction: (1) an adsorption step including regulating the ratio “amount by mole of bromide ions in the mother liquor/total amount by mole of heavy metal ions in the mother liquor” to 0.3 to 3, and then exposing the mother liquor to a pyridine-ring-containing chelate resin which has been heated to 35 to 140° C., so that the resin adsorbs catalyst-derived heavy metal ions and bromide ions, and also adsorbs a carboxylic acid mixture which has been by-produced through the liquid-phase oxidation reaction, (2) an elution step (A) of exposing hydrous acetic acid having a water content of 1 to 15 mass % to the pyridine-ring-containing chelate resin which has undergone the adsorption step, thereby yielding an eluate containing the by-produced carboxylic acid mixture, (3) an elution step (B) of exposing water or hydrous acetic acid having a water content of 20 mass % or more to the pyridine-ring-containing chelate resin which has undergone the elution step (A), thereby yielding an eluate containing catalyst-derived heavy metal ions and bromide ions, and (4) a displacement step of exposing hydrous acetic acid having a water content of 1 to 15 mass % to the pyridine-ring-containing chelate resin which has undergone the elution step (B), serving as a displacement liquid, thereby regenerating the resin. | 02-25-2010 |
20100056824 | METHOD FOR PREPARATION OF 1,2,3,4-BENZENETETRACARBOXYLIC ACID - A method for preparation of 1,2,3,4-benzenetetracarboxylic acid includes oxidizing 1,2,3,4,5,6,7,8-octahydrophenanthrene with potassium permanganate. | 03-04-2010 |
20100087675 | Dicarboxylic Acid Production with Minimal Wastewater Generation - The invention provides improved energy content in and shaft power recovery from off-gas from xylene oxidation reactions while at the same time minimizing wastewater treatment cost. More shaft power is produced using off-gas than is required to drive the main air compressor, even with preferred, relatively low oxidation temperatures. Simultaneously, an amount of wastewater greater than byproduct water from oxidation of xylene is kept in vapor form and treated along with off-gas pollutants in a self-sustaining (self-fueling) gas-phase thermal oxidative destruction unit. Optionally, off-gas is combined from multiple xylene oxidation reactors, comprising primary and/or secondary oxidation reactors and forming TPA and/or IPA. Optionally, air compressor condensate and caustic scrubber blowdown are used in a TPA process or as utility water, effectively eliminating normal flow of liquid wastewater effluent from a TPA plant. Optionally, PET off-gas containing the water of PET formation is treated in a shared thermal oxidative destruction unit, effectively eliminating normal flow of liquid wastewater effluent from a combined pX-to-TPA-to-PET plant. | 04-08-2010 |
20100113824 | Dicarboxylic Acid Production with Self-Fuel Oxidative Destruction - The invention provides improved energy content in and shaft power recovery from off-gas from xylene oxidation reactions while at the same time minimizing wastewater treatment cost. More shaft power is produced using off-gas than is required to drive the main air compressor, even with preferred, relatively low oxidation temperatures. Simultaneously, an amount of wastewater greater than byproduct water from oxidation of xylene is kept in vapor form and treated along with off-gas pollutants in a self-sustaining (self-fueling) gas-phase thermal oxidative destruction unit. Optionally, off-gas is combined from multiple xylene oxidation reactors, comprising primary and/or secondary oxidation reactors and forming TPA and/or IPA. Optionally, air compressor condensate and caustic scrubber blowdown are used in a TPA process or as utility water, effectively eliminating normal flow of liquid wastewater effluent from a TPA plant. Optionally, PET off-gas containing the water of PET formation is treated in a shared thermal oxidative destruction unit, effectively eliminating normal flow of liquid wastewater effluent from a combined pX-to-TPA-to-PET plant. | 05-06-2010 |
20100113825 | Dicarboxylic Acid Production with Direct Fired Off-Gas Heating - The invention provides improved energy content in and shaft power recovery from off-gas from xylene oxidation reactions while at the same time minimizing wastewater treatment cost. More shaft power is produced using off-gas than is required to drive the main air compressor, even with preferred, relatively low oxidation temperatures. Simultaneously, an amount of wastewater greater than byproduct water from oxidation of xylene is kept in vapor form and treated along with off-gas pollutants in a self-sustaining (self-fueling) gas-phase thermal oxidative destruction unit. Optionally, off-gas is combined from multiple xylene oxidation reactors, comprising primary and/or secondary oxidation reactors and forming TPA and/or IPA. Optionally, air compressor condensate and caustic scrubber blowdown are used in a TPA process or as utility water, effectively eliminating normal flow of liquid wastewater effluent from a TPA plant. Optionally, PET off-gas containing the water of PET formation is treated in a shared thermal oxidative destruction unit, effectively eliminating normal flow of liquid wastewater effluent from a combined pX-to-TPA-to-PET plant. | 05-06-2010 |
20100113826 | Dicarboxylic Acid Production with Enhanced Energy Recovery - The invention provides improved energy content in and shaft power recovery from off-gas from xylene oxidation reactions while at the same time minimizing wastewater treatment cost. More shaft power is produced using off-gas than is required to drive the main air compressor, even with preferred, relatively low oxidation temperatures. Simultaneously, an amount of wastewater greater than byproduct water from oxidation of xylene is kept in vapor form and treated along with off-gas pollutants in a self-sustaining (self-fueling) gas-phase thermal oxidative destruction unit. Optionally, off-gas is combined from multiple xylene oxidation reactors, comprising primary and/or secondary oxidation reactors and forming TPA and/or IPA. Optionally, air compressor condensate and caustic scrubber blowdown are used in a TPA process or as utility water, effectively eliminating normal flow of liquid wastewater effluent from a TPA plant. Optionally, PET off-gas containing the water of PET formation is treated in a shared thermal oxidative destruction unit, effectively eliminating normal flow of liquid wastewater effluent from a combined pX-to-TPA-to-PET plant. | 05-06-2010 |
20100145094 | Process and Catalyst for Oxidizing Aromatic Compounds - Catalytic compositions for conversion of substituted aromatic feed materials to oxidized products comprising aromatic carboxylic acid derivatives of the substituted aromatic feed materials comprise solid particles comprising palladium in combination with at least one of antimony, bismuth and gold, and optionally, an additional metal or metalloid component effective to promote activity or selectivity of the palladium and antimony, bismuth or gold for oxidation to aromatic carboxylic acids. A process for oxidizing substituted aromatic feed materials comprises contacting the feed material with oxygen in the presence of such catalytic compositions in a liquid reaction mixture. | 06-10-2010 |
20100222609 | Oxidation of Hydrocarbons - In a process for oxidizing a hydrocarbon to a corresponding hydroperoxide, alcohol, ketone, carboxylic acid or dicarboxylic acid, the hydrocarbon is contacted with an oxygen-containing gas in the presence of a catalyst comprising a cyclic imide of the general formula (I): | 09-02-2010 |
20100228047 | Oxidation of Hydrocarbons - In a process for oxidizing a hydrocarbon to the corresponding hydroperoxide, alcohol, ketone, carboxylic acid or dicarboxylic acid, a reaction medium comprising a hydrocarbon is contacted with an oxygen-containing gas in the presence of a catalyst comprising a cyclic imide of the general formula (I): | 09-09-2010 |
20100228048 | PROCESS FOR PREPARING SUBSTITUTED AROMATIC CARBOXYLIC ACIDS - A process for preparing an aromatic carboxylic acid having a heteroatom containing substituent is provided that includes reaction in a vessel of an aromatic precursor having an aromatic core with at least one heteroatom containing substituent and at least one hydrogen extending from the core, with a haloacetonitrile under reaction conditions to form an aromatic acetonitrile with an acetonitrile moiety. The aromatic acetonitrile is exposed to an oxidizing agent under conditions to convert the acetonitrile moiety to a carboxylic acid group to prepare the aromatic carboxylic acid having the heteroatom containing substituent. | 09-09-2010 |
20110213180 | PROCESS FOR PRODUCTION OF ISOPHTHALIC ACID - A method for producing isophthalic acid, comprising:
| 09-01-2011 |
20110213181 | PROCESS FOR PRODUCTION OF TEREPHTHALIC ACID - A method for producing terephthalic acid comprising:
| 09-01-2011 |
20120004448 | PROCESS FOR OXIDIZING ALKYL AROMATIC COMPOUNDS - A process and a mixture for oxidizing an alkyl-aromatic compound comprises forming a mixture comprising the alkyl-aromatic compound, a solvent, a bromine source, a catalyst, and ammonium acetate; and contacting the mixture with an oxidizing agent at oxidizing conditions to produce an oxidation product comprising at least one of an aromatic aldehyde, an aromatic alcohol, an aromatic ketone, and an aromatic carboxylic acid. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms; and the catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium. | 01-05-2012 |
20120041226 | WATER VAPOUR ASSISTED OZONOLYSIS OF CARBON NANOTUBES - The present invention relates to an improved process of ozonolysis of carbon nanotubes assisted by water vapour. The improved methodology provides an eco-friendly, cheaper, practical and efficient approach to functionalize carbon nanotubes with oxygen-containing moieties for further chemical functionalization and composite dispersion. | 02-16-2012 |
20120101300 | METHOD FOR MAKING HYDROPHILIC CARBON NANOTUBE FILM - A method for making a hydrophilic carbon nanotube film is provided. A reactor, an oxidative acid solution disposed in the reactor, and at least one primary carbon nanotube film are provided. The primary carbon nanotube film is set in the reactor disposed apart from the oxidative acid solution. The oxidative acid solution is then volatilized to form oxidative acid gas and the reactor is filled with the oxidative acid gas. | 04-26-2012 |
20130190528 | METHOD FOR THE OXIDATION OF UNSATURATED ORGANIC COMPOUNDS - A one-pot method for the oxidative cleavage of unsaturated carbon-carbon bonds to provide a carboxylic acid or a ketone-containing compound is disclosed. The method comprises contacting an alkene or an alkyne with hydrogen peroxide and a manganese transition metal catalyst having a ligand of formula (I): | 07-25-2013 |
20130237723 | FLUORINATED GRAPHENE OXIDE AND PREPARATION METHOD THEREOF - Provided are a fluorinated graphene oxide and a preparation method thereof. In the fluorinated graphene oxide, the mass percent of fluorine is 0.5%09-12-2013 | |
20130289303 | CROSSFLOW TYPE FILTERING OPERATION METHOD USING CERAMIC FILTER - Provided is a simple filtering operation method capable of conducting a filtering operation without clogging in a ceramic filter for a long period of time, in the operation of filtering fine crystals of an aromatic carboxylic acid in an oxidation reaction mother liquor obtained in a process of an aromatic carboxylic acid production by a cross-flow filtration using the ceramic filter. The present invention can be accomplished by conducting an operation for filtering the fine crystals and a back washing operation with a filtrate while maintaining a flowing circulation operation of the oxidation reaction mother liquor under predetermined conditions. | 10-31-2013 |
20140018569 | METHOD FOR MANUFACTURING BENZENETETRACARBOXYLIC ACID - By selectively hydrogenating a feedstock containing two or more hydrocarbons selected from the group consisting of tricyclic aromatic hydrocarbons having an anthracene skeleton and tricyclic aromatic hydrocarbons having a phenanthrene skeleton to 1,2,3,4,5,6,7,8-octahydro bodies using, as a hydrogenation catalyst, a catalyst containing two or more active metals selected from the group consisting of nickel, molybdenum, cobalt, and tungsten and then, by oxidizing the 1,2,3,4,5,6,7,8-octahydro body using a metal oxide, a benzenetetracarboxylic acid can be efficiently manufactured. | 01-16-2014 |
20160046873 | METHODS OF DEOXYGENATING BIO-BASED MATERIAL AND PRODUCTION OF BIO-BASED TEREPHTALIC ACID AND OLEFINIC MONOMERS - The present invention relates to a method of deoxygenating tall oil pitch, yielding aliphatic and aromatic hydrocarbons. The invention even comprises turning the aliphates into polymerizable olefins by steam cracking, and turning the aromates into polymerizable terephthalic acid by oxygenation and, as necessary, rearrangement. The monomers can be used for the production of polymers of partially or completely biologic origin. According to the invention, tall oil pitch is first heated to turn it into liquid, which is then fed into a catalyst bed and catalytically deoxygenated with hydrogen. The deoxygenation catalyst is preferably a Ni—Mo catalyst and, in addition, a cracking catalyst can be used, such as an acidic zeolite catalyst. The deoxygenated product stream is cooled down so as to obtain a liquid, which is distilled for separation of the aliphatic and aromatic hydrocarbons for use in the production of the respective monomers and finally polymers. | 02-18-2016 |