Class / Patent application number | Description | Number of patent applications / Date published |
525424000 | Mixed with -N=C=X reactant or polymer derived therefrom (X is chalcogen) | 10 |
20090018277 | RESIN COMPOSITION EXCELLENT IN HEAT RESISTANCE AND ADHESIVENESS, AND METHOD FOR PRODUCING SAME - Disclosed is a resin composition composed of a heat-treated resin component (A) obtained by heating and mixing an aromatic imide resin or an aromatic imidazole resin with a carboxylic acid anhydride, and a silane compound (B) having at least one functional group selected from the group consisting of an epoxy group, an amino group, an amide group, a methoxy group, an isocyanate group, a carboxyl group, a mercapto group, a vinyl group, a (poly)sulfide group and a methacrylo group. This resin composition has excellent heat resistance of aromatic imide resins and aromatic imidazole resins while being remarkably improved in adhesion to various bases. | 01-15-2009 |
20090258999 | SILICON-UREA-AZOLIDES, THEIR PREPARATION AND USE IN THE PREPARATION OF SILICONES WITH ISOCYANATE TERMINAL GROUPS - The invention relates to and their preparation and the production of Silicon-Isocyanates from Silicon-Urea-Azolides. | 10-15-2009 |
20100179288 | Highly porous and mechanically strong ceramic oxide aerogels - Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided. | 07-15-2010 |
20110124823 | SOLVENT-FREE CROSSLINKED POLYROTAXANE MATERIAL AND PROCESS FOR PRODUCTION OF SAME - A material comprising crosslinked polyrotaxanes which exhibits desired viscoelasticity, particularly stress-strain characteristics with a wide low-stress region, in spite of being free from solvent; and a process for production of the same. The material comprises a first polyrotaxane bearing first cyclic molecules and a second polyrotaxane bearing second cyclic molecules, and the first and second polyrotaxanes are crosslinked via the first and second cyclic molecules. The material is free from solvent and exhibits a stress of 2.0 MPa or below at 50% strain. | 05-26-2011 |
20120065341 | SILICON DIOXIDE DISPERSIONS - The invention relates to stable silicon dioxide dispersions and also their use for producing polyurethanes. The silicon dioxide dispersions are largely or preferably completely free of water and comprise silicon dioxide particles having an average diameter of 1-150 nm and at least one chain extender. The silicon dioxide particles can be modified by means of a silane (S) which comprises groups which are reactive toward isocyanates. Furthermore, a polyol, in particular a polyesterol and/or an isocyanate-comprising compound can be comprised in the silicon dioxide dispersions. | 03-15-2012 |
20140296450 | SOLVENT-FREE CROSSLINKED POLYROTAXANE MATERIAL AND PROCESS FOR PRODUCTION OF SAME - A material comprising crosslinked polyrotaxanes which exhibits desired viscoelasticity, particularly stress-strain characteristics with a wide low-stress region, in spite of being free from solvent; and a process for production of the same. The material comprises a first polyrotaxane bearing first cyclic molecules and a second polyrotaxane bearing second cyclic molecules, and the first and second polyrotaxanes are crosslinked via the first and second cyclic molecules. The material is free from solvent and exhibits a stress of 2.0 MPa or below at 50% strain. | 10-02-2014 |
20140329972 | HYDROXY-AMINOPOLYMERS AND METHOD FOR PRODUCING THE SAME - The present invention relates to a process for the preparation of a hydroxy-amino polymer, comprising the steps: a) reacting an H-functional starter compound carrying at least one Zerewitinoff-active H atom with an unsaturated cyclic carboxylic acid anhydride and at least one alkylene oxide compound to give a hydroxyl-group-carrying prepolymer, b) adding a primary amine and/or ammonia to the double bonds of the hydroxyl-group-carrying prepolymer obtained according to step a) to give the hydroxy-amino polymer, wherein the reaction of the H-functional starter compound with the unsaturated cyclic carboxylic acid anhydride and/or the addition of the alkylene oxide compound is carried out using a double metal cyanide catalyst (DMC catalyst). The invention relates additionally to a hydroxy-amino polymer obtainable by the above-mentioned process, wherein the ratio of the amount of alkylene oxide compound to the amount of carboxylic acid anhydride is at least 1.1:1, and further to the use of this hydroxy-amino polymer in the preparation of a polyurethane urea polymer. | 11-06-2014 |
20150087789 | PRODUCTION METHODS OF POLYESTER AND POLYURETHANE - At the time of producing a polyester by using a dicarboxylic acid component and a biomass-resource-derived diol as raw materials, a polyester is efficiently produced with good color tone, as the raw material diol derived from biomass resources, a diol in which the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 is from 0.01 to 12 ppm by mass, is used, and by controlling the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 in the raw material diol to fall in a prescribed range, the color tone of the polyester is improved. | 03-26-2015 |
20150148498 | FIBER-REINFORCED COMPOSITES MADE WITH THERMOPLASTIC RESIN COMPOSITIONS AND REACTIVE COUPLING FIBERS - Methods of making fiber-resin compositions are described. The methods may include the providing of a thermoplastic resin to an extruder, where the thermoplastic resin may include at least one reactive moiety capable of forming a covalent bond with a coupling agent on a plurality of reactive fibers. The methods may further include combining the thermoplastic resin with the plurality of reactive fibers also supplied to the extruder. The reactive fibers are sized with the coupling agent that reacts with the thermoplastic resin to form the fiber-resin composition, which may be extruded from the extruder. Methods of making fiber-reinforced composite articles from the fiber-resin composition are also described. | 05-28-2015 |
20150376325 | POLYMERS MADE FROM TELECHELIC N-ALKYLATED POLYAMIDES - This invention relates to polymers made from low molecular weight polyamide oligomers and telechelic polyamides (including copolymers) containing N-alkylated amide groups in the backbone structure. The described telechelic polyamides are used as the soft segment in the described TPU. These telechelic polyamides are unique in that they have an unexpectedly low glass-transition (desirably 30 degrees C. or lower) which makes them suitable for further reaction and polymerization, allowing for the formation of the described TPU. The resulting TPU can provide improved hydrolytic, oxidative and/or thermal stability as well as improved adhesion to other materials, especially polar materials. | 12-31-2015 |