Entries |
Document | Title | Date |
20080221229 | WATER-ABSORBING AGENT AND PRODUCTION METHOD THEREOF - To provide a water absorbing agent which is excellent in balance between absorbency and liquid permeability against pressure and is excellent in flowability at the time of moisture absorption. The water absorbing agent comprises water absorbent resin particles and an organic surface additive, wherein: the organic surface additive having (i) a reactive group for a functional group of a surface of each water absorbent resin particle and (ii) a hydrophobic group exists on the surface of the water absorbent resin particle, and the hydrophobic group has a hydrocarbon group whose carbon number is 8 or more, and a ratio of an oxyalkylene group in a molecular mass of the organic surface additive is 0 or more and 25 mass % or less. | 09-11-2008 |
20080287559 | Brominated Butadiene/Vinyl Aromatic Copolymers, Blends of Such Copolymers with a Vinyl Aromatic Polymer and Polymeric Foams Formed From Such Blends - A thermally stable brominated butadiene copolymer, such as brominated styrene/butadiene block copolymer, brominated random styrene/butadiene copolymer or brominated styrene/butadiene graft copolymer, preparation of the brominated butadiene copolymers, use of the brominated butadiene copolymers as a flame retardant additive and polymeric compositions, both foamed and non-foamed, that incorporate a flame-retarding amount of brominated butadiene copolymer. | 11-20-2008 |
20090069454 | Component matrix - Components formed with a polymer matrix are subject to problems in relation to shrinkage as that polymer matrix cures. With regard to components incorporating reinforcing fibres, such shrinkage may tension and curl the fibres resulting in stresses within the component and premature failure. By providing voids or expandable beads, which alter in size to compensate for volumetric variation in the polymer matrix during curing, such tension may be avoided. Advantageously, the voids or expandable beads have a shape such that there is a reduction in void surface area as the void or expandable bead increases in volume. | 03-12-2009 |
20090093558 | MOBILE EXPANDED POLYMER PROCESSING SYSTEMS AND METHODS - A mobile polymer system. The system includes a mobile platform and a heat generating device mounted to the mobile platform. The system also includes a polymer expansion unit mounted to the mobile platform, wherein the polymer expansion unit is adapted to expand a polymer, using heat generated by the heat generating device, at a location of the mobile polymer expansion system to create an expanded polymer that can be used to create an expanded polymeric product that is comprised of the expanded polymer. | 04-09-2009 |
20090149559 | HEAT-EXPANDABLE MICROSPHERES, METHOD FOR PRODUCING THE SAME, AND APPLICATION THEREOF - Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture. | 06-11-2009 |
20090156700 | Expanded polypropylene resin beads and foamed molded article thereof - Expanded polypropylene resin beads having a melting point of not less than 120° C. but less than 140° C., the melting point being determined from a DSC curve obtained by heat flux differential scanning calorimetry in accordance with JIS K7121-1987 in which a sample of 1 to 3 mg of the expanded polypropylene resin beads is heated to 200° C. at a heating rate of 10° C./minute, then cooled to 30° C. at a rate of 10° C./minute, and again heated from 30° C. to 200° C. at a heating rate of 10° C./minute to obtain the DSC curve. The expanded polypropylene resin beads has an apparent density ρ | 06-18-2009 |
20090176900 | FOAMED POLYHYDROXYALKANOATE RESIN PARTICLES AND METHOD OF PRODUCING THE FOAMED PARTICLES - It is intended to provide an easy-to-use, energy-saving and economical method of producing foamed resin particles having a high environmental compatibility by using an ether, which generates neither sulfur oxide nor sot in the course of disposal and incineration and enables considerable reduction in nitrogen oxide formation, and further using a resin which originates in a plant and contributes to the carbon dioxide fixation. Namely, a method of producing foamed P3HA resin particles comprising the step of feeding particles of a resin containing a copolymer, which is produced by a microorganism and has a repeating unit represented by the general formula (1) [—CHR—CH | 07-09-2009 |
20090258958 | Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof - A true tetrafluoroethylene (TFE) copolymer of the fine powder type is provided, wherein the copolymer contains polymerized comonomer units of at least one comonomer other than TFE in concentrations of at least or exceeding 1.0 weight percent, and which can exceed 5.0 weight percent, wherein the copolymer is expandable, that is, the copolymer may be expanded to produce strong, useful, expanded TFE copolymeric articles having a microstructure of nodes interconnected by fibrils. Articles made from the expandable copolymer may include tapes, membranes, films, fibers, and are suitable in a variety of end applications, including medical devices. | 10-15-2009 |
20090292031 | Thermally Foamable Microsphere, Method of Producing the Same, and Use Thereof - This invention aims to provide a thermally foamable microsphere which is excellent in heat resistance, has a high expansion ratio, and shows stable foaming behavior; a method of producing the thermally foamable microsphere; and suitable use thereof. | 11-26-2009 |
20100004347 | Temperature-Sensitive Active Ingredient Compositions for Reducing the Density of Plastics - The invention relates to an active ingredient composition which has a high content in thermosensitive foaming agents and one or more polyolefin resins, the portion which is larger in quantity being a metallocene and optionally the remaining resins being polar or nonpolar nonmetallocene polyolefin resins. All polyolefin resins add up to at least 10% by weight of the formulation and have a melting point between 80 and 170° C. The reduced dust active ingredient composition according to the invention is used for the masterbatch production of foamed plastics. | 01-07-2010 |
20100087555 | QUALITY POLYMER FOAM FROM FLUORINATED ALKENE BLOWING AGENTS - Alkenyl aromatic polymer foam comprising a polymer matrix containing one or more polymer and defining a plurality of cells having an average cell size wherein: (a) the alkenyl aromatic polymer foam has: —(i) an average cell size that is in a range of 0.02 and 5 millimeters; —(ii) a density of 64 kilograms per cubic meter or less; —(iii) an open cell content less than 30 percent; and—(iv) a cell size variation of 30% or less; and wherein the foam further comprises one or more fluorinated alkene blowing agent at a concentration of 0.03 moles or more and 0.3 moles or less per 100 grams of polymer foam. | 04-08-2010 |
20100184877 | BIODEGRADABLE ALIPHATIC POLYESTER-BASED FOAMED PARTICLE AND MOLDED PRODUCT OF THE SAME - Biodegradable aliphatic polyester-based resin foamed particles that are excellent in environmental suitability and are produced using a source material derived from a plant, and a molded product of the same are provided. Thus, biodegradable aliphatic polyester-based resin foamed particles retaining high rigidity even when foamed at a high degree and having heat resistance, and a molded product are provided. Biodegradable aliphatic polyester-based resin foamed particles produced by foaming a resin composition obtained by melting and kneading a base resin constituted with a polymer (poly(3-hydroxyalkanoate)) having one or more recurring unit represented by the formula: [—O—CHR—CH | 07-22-2010 |
20100197818 | METHOD OF MAKING CONCRETE - A method of preparing a light weight concrete composition using expanded polymer particles that includes a) replacing from about 10 to about 50 volume percent of the coarse aggregate in the concrete composition with prepuff particles; and b) preparing the concrete composition by combining ingredients comprising 3-40 volume percent cement, 1-50 volume percent fine aggregate, 0-40 volume percent coarse aggregate, 10-22 volume percent water, and 5-40 volume percent of prepuff particles. The prepuff particles have an average particle diameter of from 0.2 mm to 5 mm, a bulk density of from 0.02 g/cc to 0.56 g/cc, an aspect ratio of from 1 to 3. The concrete composition has a density of from about 90 to about 135 lb./ft | 08-05-2010 |
20100204349 | HEAT-EXPANDABLE MICROSPHERES, PROCESS FOR PRODUCING THE SAME, AND APPLICATION THEREOF - Heat-expandable microspheres include a shell of thermoplastic resin and core material encapsulated in the shell. The core material include a blowing agent having a boiling point not higher than the softening point of the thermoplastic resin and a gas migration inhibitor having a boiling point higher than the softening point of the thermoplastic resin. The ratio of the gas migration inhibitor to the core material is at least 1 weight percent and below 30 weight percent. The average particle size of the heat-expandable microspheres ranges from 1 to 100 micrometers. | 08-12-2010 |
20100240782 | PROCESS FOR PREPARING STYRENE-BASED (CO)POLYMERS - A process for preparing a styrene-based (co)polymer comprising the steps of: a) preparing a monomer composition comprising styrene monomer and optionally one or more co-monomers and b) polymerising the monomer composition in the presence of an initiator mixture containing (i) 55-95 wt % of at least one polyfunctional initiator having a 1-hour half-life temperature in the range of 70-110° C. and (ii) 5-45 wt % of at least one monofunctional initiator having a 1-hour half-life temperature in the range of 70-110° C., so as to form the styrene-based (co)polymer. | 09-23-2010 |
20100261802 | Method for Producing Expandable Polystyrene and the Use Thereof - A method for producing expandable polystyrene (EPS) or extruded polystyrene foams (XPS), starting from polystyrene already present in the polymerized state or polystyrene melts, the same containing at least one expanding agent and/or at least one flame or fire retardant and/or at least one radical former as a flame retarding synergist, either from the start and/or being added during the production process. To reduce the extent to which the molecular weight is decreased as a result of the chain decomposition occurring during the heating as part of the production process, at least one stable free radical from the group of organic nitroxyl radicals of the general formula (1) is added to the polystyrene and/or the melt thereof. In the formula R | 10-14-2010 |
20100267850 | PROCESS FOR PRODUCING EXPANDED POLYOLEFIN RESIN PARTICLES AND EXPANDED POLYOLEFIN RESIN PARTICLES - Provided is a process for producing expanded polyolefin resin particles whose cells are not made nonuniform or extremely smaller as seen in conventional expanded particles, whose cell diameter and expansion ratio can be easily controlled independently, and which, when subjected to in-mold expansion molding, give in-mold expanded molded products satisfactory in fusibility and excellent in surface properties. The process is a process for producing expanded polyolefin resin particles by: dispersing polyolefin resin particles together with an aqueous dispersion medium into a closed vessel; heating the polyolefin resin particles up to or above a softening temperature of the polyolefin resin particles; and releasing the polyolefin resin particles into a zone whose pressure is lower than an internal pressure of the closed vessel, with use as a foaming agent of water serving as the dispersion medium, the polyolefin resin particles being composed of a polyolefin resin composition including: polyolefin resin; a substance selected from among polyethylene glycol, polyvalent alcohol having a carbon number of not less than 3 to not more than 6, and a water-absorbing substance having no function of forming foaming nuclei; and a foam nucleating agent. | 10-21-2010 |
20100305224 | POLYESTER FOAM MATERIAL HAVING FLAME-RESISTANT BEHAVIOUR - An expanded cellular material from aromatic polyester resins obtained by a reactive extrusion foaming of polyester resins, wherein the polyester foam provided with flame retardancy achieves a total heat release (THR | 12-02-2010 |
20110184079 | FIRE-RETARDANT POLYURETHANE FOAM AND PROCESS FOR PREPARING THE SAME - A process for preparing a polyurethane foam that contains particles of expandable graphite and a halogenated fire-retardant additive which surprisingly impart excellent fire-retardant properties to the foam and provide a stable isocyanate-reactive component having improved pot life for industrial scale production purposes. The polyurethane foam can be prepared by mixing a single isocyanate-reactive component containing the graphite and halogenated additives along with all of the polyols and other ingredients with an isocyanate component in a two-component mixing machine such as a high-pressure mixing device for applying the reaction mixture into a suitable container. | 07-28-2011 |
20110196052 | FLAME RETARDANTS - Phosphine sulfide derivatives of the formula (I), | 08-11-2011 |
20110224316 | PREPARING EXPANDABLE STYRENE POLYMERS - The invention provides a process for preparing expandable styrene polymers which comprises the steps of: | 09-15-2011 |
20110281963 | POLYPROPYLENE RESIN PRE-FOAMED PARTICLE AND METHOD FOR PRODUCING SAME, AND POLYPROPYLENE RESIN IN-MOLD FOAMING MOLDED ARTICLE - Provided are polypropylene resin pre-foamed particles including, as base resin, polypropylene resin that satisfies the following requirements (a) through (c): (a) in cross fractionation chromatography, an amount of components eluted at a temperature of not more than 40° C. is not more than 2.0% by weight; (b) a melting point is not less than 100° C. but not more than 160° C.; and (c) propylene monomer units are present in an amount of not less than 90 mol % but not more than 100 mol %, and olefin units each having a carbon number of 2 or 4 or more are present in an amount of not less than 0 mol % but not more than 10 mol %. The polypropylene resin pre-foamed particles can be molded by in-mold foaming molding at a not high molding heating steam pressure, and a polypropylene resin in-mold foaming molded product excellent in dimensional stability at high temperatures can be prepared from the polypropylene resin pre-foamed particles. | 11-17-2011 |
20110306689 | Expandable Polystyrene and Methods of Forming the Same - Expanded polystyrene, foamed articles and methods of making the same are described herein. The expanded polystyrene generally includes polystyrene selected from expandable polystyrene and extrusion polystyrene, the polystyrene exhibiting a molecular weight of from about 130,000 Daltons to about 220,000 Daltons; a melt flow index of from about 20 to about 30 and a density of from about 0.1 lb/ft | 12-15-2011 |
20120029101 | EXPANDED POLYPROPYLENE COPOLYMER RESIN PARTICLES - Disclosed is an expanded polypropylene copolymer resin particle whose base resin is a polypropylene random copolymer resin having a melting point of not more than 145° C., the base resin having a H/W ratio of not more than 8 where H (%) is a maximum height of an elution peak and W (° C.) is a peak width at half a height of the peak in an elution curve obtained from a differential value of eluted content measured by cross fractionation chromatography, and a ratio (Mw/Mn) of a weight-average molecular weight (Mw) and a number-average molecular weight (Mn) being not less than 3.5 in a molecular weight distribution measurement of a whole of eluted components. With such an expanded polypropylene copolymer resin particle, it is possible to provide expanded polypropylene copolymer resin particles which are capable of producing an in-mold expansion-molded article with a low molding heating vapor pressure, and which causes few deformation or shrinkage of an obtained in-mold expansion-molded article (i.e. having a broad molding heating temperature range) even if the in-mold expansion molding is carried out with a high molding heating vapor pressure and has a low decrease in physical properties such as compression strength. | 02-02-2012 |
20120041085 | EXPANDABLE COMPOSITE RESIN PARTICLES FOR LONG-TERM STORAGE, PRE-EXPANDED PARTICLES FORMED THEREFROM AND EXPANDED MOLDED ARTICLES - Expandable composite resin particles for long-term storage, comprising 500 to 5000 ppm of water and 7.5 to 11.0% by weight of pentane in composite resin of polyolefin-based resin and polystyrene-based resin. | 02-16-2012 |
20120283344 | EXPANDED PARTICLE OF POLYETHYLENE-BASED RESIN AND IN-MOLD EXPANSION MOLDED ARTICLE OF POLYETHYLENE-BASED RESIN - A polyethylene resin expanded particle has an expansion ratio of not less than 10 times and not more than 50 times, and in a DSC curve obtained by differential scanning calorimetry (DSC), the polyethylene resin expanded particle (i) shows two melting peaks, the two melting peaks being a low-temperature side melting peak and a high-temperature side melting peak, and (ii) further has a shoulder in a region not less than 100° C. and not more than the low-temperature side melting peak temperature, the shoulder having a shoulder ratio which is not less than 0.2% and not more than 3%. This makes it possible to obtain a polyethylene resin expanded particle for producing a polyethylene resin in-mold expansion molded article in which especially an end (edge part) of the polyethylene resin in-mold expansion molded article is excellent in fusion bond level and appearance and which has neither a wrinkle nor a void on a surface thereof, is excellent in surface property (has a beautiful surface), and has a high expansion ratio. | 11-08-2012 |
20130030065 | HEAT-EXPANDABLE MICROSPHERES AND A PROCESS FOR PRODUCING THE SAME - A method that produces heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance. | 01-31-2013 |
20130085192 | THERMALLY EXPANDABLE MICROCAPSULE AND PROCESS FOR PRODUCTION OF THERMALLY EXPANDABLE MICROCAPSULE - The present invention provides a thermally expandable microcapsule that is excellent in heat resistance and durability. The present invention is a thermally expandable microcapsule, which comprises a shell containing a copolymer, and a volatile liquid as a core agent included in the shell, the copolymer being obtainable by polymerization of a monomer mixture containing a monomer A and a monomer B, the monomer A being at least one selected from the group consisting of a nitrile group-containing methacrylic monomer and an amide group-containing methacrylic monomer, the monomer B being at least one selected from the group consisting of a carboxyl group-containing methacrylic monomer and an ester group-containing methacrylic monomer, a total amount of the monomer A and the monomer B accounting for 70% by weight or more of the monomer mixture, a weight ratio of the monomer A and the monomer B being 5:5 to 9:1, and the monomer mixture containing methacrylonitrile and methacrylic acid in a total amount of not more than 70% by weight of the monomer mixture. | 04-04-2013 |
20130203875 | Expandable Functional TFE Copolymer Fine Powder, the Expandable Functional Products Obtained Therefrom and Reaction of the Expanded Products - A functional TFE copolymer fine powder is described, wherein the TFE copolymer is a polymer of TFE and at least one functional comonomer, and wherein the TFE copolymer has functional groups that are pendant to the polymer chain. The functional TFE copolymer fine powder resin is paste extrudable and expandable. Methods for making the functional TFE copolymer are also described. The expanded functional TFE copolymer material may be post-reacted after expansion. | 08-08-2013 |
20140107238 | Method For Manufacturing A Cementitious Composition - A method of expanding expandable polymeric microspheres including contacting an aqueous slurry including unexpanded, expandable polymeric microspheres with steam in-situ during manufacture of a cementitious composition or article, wherein the aqueous slurry optionally further includes an admixture therefor. A method of manufacturing a cementitious composition or article includes: (i) contacting an aqueous slurry of unexpanded, expandable polymeric microspheres with steam proximate to and/or during said manufacturing of the cementitious composition to create expanded polymeric microspheres; (ii) pre-wetting the expanded polymeric microspheres; and (iii) mixing the pre-wetted, expanded polymeric microspheres with cement and water to form the cementitious composition, wherein the aqueous slurry optionally further comprises an admixture therefor. | 04-17-2014 |
20140213674 | WATER EXPANDABLE POLYMER BEADS - The present invention relates to a process for the emulsifier-free preparation of water expandable polymer beads. The process comprises the steps of: a) providing an emulsifier-free monomer composition comprising styrene and a polar comonomer comprising a carbon-to-carbon double bond, b) prepolymerizing the monomer composition to obtain a prepolymer composition comprising styrene, the polar comonomer and their copolymer, c) adding an aqueous dispersion of nanoclay to the prepolymer composition to obtain an inverse emulsion, d) suspending the inverse emulsion obtained by step c) in an aqueous medium to yield an aqueous suspension of suspended droplets and e) polymerizing the monomers in the droplets of the suspension obtained by step d). | 07-31-2014 |
20140243438 | THERMALLY FOAMABLE MICROSPHERE, METHOD OF PRODUCING THE SAME, AND USE THEREOF - This invention aims to provide a thermally foamable microsphere which is excellent in heat resistance, has a high expansion ratio, and shows stable foaming behavior; a method of producing the thermally foamable microsphere; and suitable use thereof. | 08-28-2014 |
20140275301 | VINYL POLYMERS PREPARED VIA SUSPENSION POLYMERIZATION AND METHODS THEREOF - A method of producing vinyl polymer particles by suspension polymerization comprising: combining an aqueous media and a tricalcium phosphate to a reaction vessel; adding a pH stabilizing agent to the reaction vessel; adding a vinyl monomer to the reaction vessel; adding a peroxide initiator, e.g., which also generates CO | 09-18-2014 |
20140288198 | RIGID POLYURETHANE RESIN FOR CUTTING WORK - The present invention aims to provide a rigid polyurethane resin for cutting, which has high heat resistance, no scorching, and reduced expansion due to absorption of moisture in the air. The rigid polyurethane resin-forming composition (P) for cutting of the present invention includes: a polyol component (A); an isocyanate component (B); an inorganic filler (C); and a dehydrating agent (D). The polyol component (A) includes: 45 to 99% by weight of a polyphenol (j) alkylene oxide adduct (a), the polyphenol (j) having k functional groups where k is an integer of 2 or 3; and 1 to 55% by weight of a polyol (b). The polyphenol (j) alkylene oxide adduct (a) includes a total of not more than 39% by weight of a polyphenol (j) alkylene oxide adduct (ak) with at most k moles of alkylene oxide, based on 100% by weight of the polyphenol (j) alkylene oxide adduct (a), and has a hydroxyl value of 100 to 295 mg KOH/g. The polyol (b) is a multi-functional aliphatic or alicyclic polyol having 3 to 8 functional groups and has a hydroxyl value of 160 to 700 mg KOH/g. The weight of the oxyethylene groups included in the polyol component (A) is not more than 10% by weight in 100% by weight of the polyol component (A). | 09-25-2014 |
20140323604 | DUAL-FOAMED POLYMER COMPOSITION - A polymer foam having high bonding strength and improved compressive hardness characteristics is accomplished by the polymer foam comprising cavities formed by microballoons, and also 2 to 20 vol. %, based on the total volume of the polymer foam, of cavities surrounded by the polymer foam matrix. | 10-30-2014 |
20140364520 | COMPOSITION FOR PAINTING AND VARNISHING PARTS OF VEHICLE AND VARNISHING PARTS OF VEHICLE USING THE SAME - The present invention relates to a composition for painting and varnishing parts of a vehicle, including: 20 to 50 wt % of thermosetting resin; | 12-11-2014 |
20140364521 | HEAT-EXPANDABLE MICROSPHERES, PROCESS FOR PRODUCING THE SAME, AND APPLICATION THEREOF - Heat-expandable microspheres with high encapsulation efficiency of a blowing agent and good heat-expansion performance, a process for reproducibly producing the heat-expandable microspheres and application thereof are provided. The heat-expandable microspheres comprise essentially a thermoplastic resin shell and a blowing agent encapsulated therein, and contain not more than 500 ppm of silicon, not more than 350 ppm of aluminum and not more than 600 ppm of the total of the silicon and aluminum. The heat-expandable microspheres retain at least 70% of the blowing agent encapsulated therein at the temperature which is the average of their expansion-initiation temperature and maximum expansion temperature. | 12-11-2014 |
20140371335 | EXPANDABLE GRANULATES BASED ON VINYL-AROMATIC POLYMERS HAVING AN IMPROVED EXPANDABILITY AND PROCESS FOR THE PREPARATION THEREOF - Expandable granulates, having compositions based on vinyl-aromatic polymers, including: a) 65-99.8% by weight of a copolymer obtained by polymerizing 85-100% by weight of one or more vinyl-aromatic monomers and 0-15% by weight of an α-alkylstyrene in which the alkyl group contains from 1 to 4 carbon atoms; b) 0.01-20% by weight, calculated with respect to the polymer (a), of a carbon black having an average diameter ranging from 10 to 1000 nm and a surface area ranging from 5 to 200 m | 12-18-2014 |
20150011664 | PELLET BASED TOOLING AND PROCESS FOR BIODEGRADABLE COMPONENT - An example starch-based material for forming a biodegradable component includes a mixture of a starch and an expansion additive. The starch has an amylose content of less than about 70% by weight. The expansion additive enhances the expansion and physical properties of the starch. A method of preparing a starch-based material is also disclosed and an alternate starch-based material for forming a biodegradable component is also disclosed. | 01-08-2015 |
20150322226 | MICROSPHERES - The present invention relates to thermally expandable thermoplastic microspheres comprising a polymer shell made from ethylenically unsaturated monomers encapsulating a propellant, said ethylenically unsaturated monomers comprising from 21 to 80 wt % of methacrylamide and from 20 to 70 wt % methacrylonitrile, the total amount of methacrylamide and methacrylonitrile being from 70 to 100 wt % of the ethylenically unsaturated monomers. Furthermore, the invention relates to production and use of such microspheres. | 11-12-2015 |
20150353701 | EXPANDABLE VINYL AROMATIC POLYMERS COMPRISING PLATELET NEEDLE COKE PARTICLES - Expandable vinyl aromatic polymers may contain comminuted needle petroleum coke with a polymodal particle size distribution. Foams obtained from such expandable vinyl aromatic polymers have a reduced thermal conductivity at a reduced foam density. | 12-10-2015 |
20150361240 | COMPOSITION FOR MANUFACTURING AN ELASTIC TANNIN BASED FOAM MATERIAL, AND PROCESS THEREOF - A composition for manufacturing an elastic tannin based foam material comprises tannins according to an amount generally comprised between 10% and 80% by weight, and an isocyanate according to an amount comprised between 5% and 80% by weight. The composition further includes a substance having an aminic functionality and a alkoxylated functionality, which substance includes at least one amino group and at least one alkoxylated group, these groups being part of the same molecule or of different molecules. | 12-17-2015 |
20150368423 | THERMALLY EXPANDING MICROCAPSULES - The present invention provides a thermally expandable microcapsule that has a high expansion ratio and durability at high temperatures, and is not likely to cause discoloration and odor when used for foam molding. The thermally expandable microcapsule of the present invention includes: a shell formed from a polymer; and a volatile expansion agent as a core agent encapsulated by the shell, the shell obtained by polymerizing a monomer composition that contains a nitrile monomer and a compound having a glycidyl group in a molecule, the shell exhibiting a value y of 50% or higher and a ratio y/x of 1.1 or higher, in which x represents a gel fraction at ordinary temperature, and y represents a gel fraction upon heating at 180° C. for 30 minutes. | 12-24-2015 |
20150376363 | POROUS MATERIAL, PRODUCING METHOD THEREOF, AND SERIAL PRODUCING APPARATUS THEREOF - Provided is a porous material made of at least an aliphatic polyester resin or an aliphatic polycarbonate resin, and having a porosity of 70% or higher, wherein a polystyrene equivalent weight average molecular weight of the resin measured by gel permeation chromatography is 300,000 or greater. | 12-31-2015 |
20150376471 | METHOD FOR COAGULATING POLYMER DISPERSIONS USING EXPANDABLE MICROSPHERES - Method for coagulating an aqueous polymer dispersion, where the aqueous polymer dispersion comprises at least one polymer in dispersion in aqueous phase, and also comprises thermally expandable, thermoplastic microspheres, the polymer dispersion is coagulated by energy input, and the coagulated composition is delivered via an outlet aperture, preferably in the form of a nozzle. | 12-31-2015 |
20160032071 | ARTICLES PRODUCED FROM VDF-co-(TFE or TrFE) POLYMERS - VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided. | 02-04-2016 |
20160075800 | PROCESS FOR THE PREPARATION OF MONODISPERSE POLYMER PARTICLES - A process for the preparation of monodisperse polymer particles which are formed by contacting monomers with aqueous dispersions comprising monodisperse swellable seed polymers/oligomers, and initiating polymerization in the presence of a steric stabilizer. The resulting swollen seed particles are characterized by the particle mode diameter. | 03-17-2016 |
20160096942 | Method of Making a Foam - A method of making a foam uses the following steps. A mixture is created having a polymerizable condensation polymer and a blowing agent. The polymerizable condensation polymer has hydroxy acid units and unsaturated di-functional units. The unsaturated di-functional units are unsaturated dicarboxylic acid units or unsaturated di-alcohol units. The mixture is expanded to create a froth. The polymerizable condensation polymer in the froth is reacted to create the foam. | 04-07-2016 |
20160107360 | PROCESSES FOR PROVIDING CONTROLLED DENSITY ARTICLES - An extrusion process or providing controlled density articles that have integral skins formed thereon. | 04-21-2016 |
20160115290 | Method and a Device for Preparation of Expanded Microspheres - The invention relates to a method and a device for the preparation of expanded thermoplastic microspheres from unexpanded thermally expandable thermoplastic microspheres comprising a thermoplastic polymer shell encapsulating a blowing agent. The method comprises: (a) feeding a slurry of such expandable thermoplastic microspheres in a liquid medium into a heating zone; (b) heating the slurry in the heating zone, without direct contact with any fluid heat transfer medium, so the expandable microspheres reach at least a temperature at which they would have started to expand at atmospheric pressure, and maintaining a pressure in the heating zone sufficiently high so the microspheres in the slurry do not-fully expand; and, (c) withdrawing the slurry of expandable microspheres from the heating zone into a zone with a pressure sufficiently low for the microspheres to expand. | 04-28-2016 |
20160160000 | PROCESS FOR PRODUCING HEAT-EXPANDABLE MICROSPHERES - Provided is a process for efficiently producing heat-expandable microspheres having high solvent resistance. The process produces the heat-expandable microspheres composed of a shell of a thermoplastic resin and a blowing agent encapsulated therein and vaporizable by heating, and includes the steps of preparing an aqueous suspension by dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing, as an essential component, a peroxide A having a theoretical active oxygen content of at least 7.8%, and polymerizing the polymerizable component in the oily mixture. | 06-09-2016 |
20190144622 | EXPANDABLE COMPOSITIONS CONTAINING AROMATIC VINYL POLYMERS HAVING SELF-EXTINGUISHING PROPERTIES AND IMPROVED PROCESSABILITY | 05-16-2019 |