Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Group IA or IIA light metal containing material utilized during the Fischer Tropsch step of the process (i.e., Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, or Ba)

Subclass of:

518 - Chemistry: fischer-tropsch processes; or purification or recovery of products thereof

518715000 - GROUP VIII METAL CONTAINING CATALYST UTILIZED FOR THE FISCHER-TROPSCH REACTION (I.E., FE, CO, NI, RU, RH, PD, OS, IR, OR PT)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
518717000 Group IA or IIA light metal containing material utilized during the Fischer Tropsch step of the process (i.e., Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, or Ba) 11
20080275145Catalysts - A catalyst including cobalt, zinc oxide and aluminium is described, having a total cobalt content of 15-75% by weight (on reduced catalyst), an aluminium content ≧10% by weight (based on ZnO) and which when reduced at 425° C., has a cobalt surface area as measured by hydrogen chemisorption at 150° C. of at least 20 m11-06-2008
20100048742SUPPORTED COBALT CATALYSTS FOR THE FISCHER TROPSCH SYNTHESIS - A catalyst includes 5-75% wt cobalt supported on an oxidic support consisting of aluminium and 0.01-20% wt lithium, and a process for preparing the catalyst. The catalysts are useful for the Fischer-Tropsch synthesis of hydrocarbons.02-25-2010
20120245236FISCHER-TROPSCH CATALYSTS CONTAINING IRON OR COBALT SELECTIVE TOWARDS HIGHER HYDROCARBONS - Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation. Highly selective syntheses of high value jet fuel, C2-C6 alkenes, C2-C6 carboxylic acids; α-hydroxylic acids and their derivatives have been realized by tuning the oxidation ability of OMS-2 supports and by doping with Cu09-27-2012
20120289615CATALYST FOR PRODUCING HYDROCARBON FROM SYNGAS AND PRODUCING METHOD OF CATALYST - An exemplary method for producing a catalyst is provided where the catalyst includes a catalyst support on which a metallic compound is loaded. An impurity content of the catalyst can be in a range of approximately 0.01 mass % to 0.15 mass %. In particular, the exemplary method can include pre-treating the catalyst support to lower an impurity concentration of the catalyst support, and loading the metallic compound on the catalyst support after the pretreatment procedure.11-15-2012
20130012606FISCHER-TROPSCH SYNTHESIS - A process for the preparation of an F-T catalyst in which the presence of alkaline earth metals is minimized in the support itself and in the processing conditions, in order to provide a catalyst with an alkaline earth metal content of less than 2000 ppm.01-10-2013
20130116351PROCESS FOR PRODUCING A METHANATION CATALYST AND A PROCESS FOR THE METHANATION OF SYNTHESIS GAS - The present invention relates to a process for producing a catalyst for carrying out methanation reactions. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds brought into contact with one another are intimately mixed, thermally treated so that the metal salt fraction melts and subsequently subjected to a low-temperature calcination step and a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises/contains nickel nitrate hexahydrate. The hydrotalcite-comprising starting material is preferably hydrotalcite or a hydrotalcite-like compound as starting material, and the hydrotalcite-comprising starting material preferably comprises magnesium and aluminum as metal species.05-09-2013
20130217793FISCHER-TROPSCH SYNTHESIS USING MICROCHANNEL TECHNOLOGY AND NOVEL CATALYST AND MICROCHANNEL REACTOR - The disclosed invention relates to a process for converting a reactant composition comprising H08-22-2013
20140336287Protected reduced metal catalyst - The invention relates to a process for producing a protected reduced supported metal catalyst powder, in particular catalysts used in a variety of chemical reactions, such as the hydrogenation of hydrocarbon compounds in petrochemical and oleo-chemical processes; the hydrogenation of unsaturated fats and oils, and unsaturated hydrocarbon resins; and in the Fischer Tropsch process. This invention also relates to a composition comprising said catalyst and a liquid. In accordance with the invention there is provided a process for preparing a protected, reduced metal catalyst on a support, wherein said supported catalyst is in the form of a powder, which process comprises contacting and mixing said supported catalyst with a liquid in an inert atmosphere and wherein the amount of liquid corresponds to up to five times the amount required for incipient wetness.11-13-2014
20160107144CATALYST COMPOSITION FOR THE SELECTIVE CONVERSION OF SYNTHESIS GAS TO LIGHT OLEFINS - A catalyst composition and process for preparing it and for using it to enhance the selectivity to light (C2 to C3) olefins in a Fischer-Tropsch conversion of synthesis gas is disclosed. The catalyst composition is an iron-based catalyst on an yttria/zirconia support. In a Fischer-Tropsch reaction the selectivity to ethylene may be enhanced by at least 20 mole percent and to propylene by at least 4 mole percent, in comparison with use of an otherwise identical catalyst that is free of yttria, in an otherwise identical Fischer-Tropsch reaction.04-21-2016
20160121311NOVEL IRON-BASED CATALYSTS AND TREATMENT PROCESS THEREFOR FOR USE IN FISCHER-TROPSCH REACTIONS - A Fischer-Tropsch catalyst, useful for conversion of synthesis gas to olefins, is prepared from a catalyst precursor composition including iron oxide and an alkali metal on a substantially inert support, and then treated by a process including as ordered steps (1) reduction in a hydrogen-containing atmosphere at a pressure of 0.1 to 1 M Pa and a temperature from 280° C. to 450° C.; (2) carburization in a carbon monoxide-containing atmosphere at a pressure from 0.1 to 1 M Pa and a temperature from 200° C. to less than 340° C.; and (3) conditioning in a hydrogen- and carbon monoxide-containing atmosphere at a pressure from 0.1 to 2 MPa and a temperature from 280° C. to 340° C. The resulting catalyst exhibits at least one improvement selected from (1) increased overall activity; (2) reduced break-in time; (3) slowed rate of deactivation; and (4) increased time to onset of deactivation; when compared to an otherwise identical catalyst precursor composition treated by one or some, but not all, of the given steps and/or under different conditions.05-05-2016
518718000 In the form of a salt 1
20140243436FISCHER-TROPSCH CATALYST COMPRISING COBALT, MAGNESIUM AND PRECIOUS METAL - A method is described for preparing a catalyst precursor suitable for use in the Fischer-Tropsch synthesis of hydrocarbons including 10 to 40% by weight of cobalt oxide crystallites and 0.05 to 0.5% by weight of a precious metal promoter, dispersed over the surface of a porous transition alumina wherein the surface of the transition alumina has been modified by inclusion of 0.25 to 3.5% wt magnesium, including the steps of: 08-28-2014
Website © 2025 Advameg, Inc.