Class / Patent application number | Description | Number of patent applications / Date published |
510185000 | For interior of engine or parts thereof (e.g., crankcase, etc.) | 6 |
20120071377 | ENGINE CLEANING COMPOSITION AND METHOD FOR CLEANING THE ENGINE - The present invention provides a method of cleaning an engine having at least one combustion chamber, and the method includes the steps of providing an engine cleaning composition and introducing the cleaning composition into the combustion chamber. The engine cleaning composition includes: (i) 10-100 wt % of an alkanol amine hydroxy carboxylate represented by formula (I): RCHOHCOONH | 03-22-2012 |
20150080282 | CLEANSING AND FILM-FORMING WASHES FOR TURBINE COMPRESSORS - Cleansing washes for compressor sections of turbines include one or more surfactants, one or more corrosion inhibiting dispersants, and one or more balance materials selected from a group consisting of water and solvents. The one or more surfactants and the one or more corrosion inhibiting dispersants combine to comprise from about 1 weight percent to about 20 weight percent, as actives, of the cleansing wash. | 03-19-2015 |
510186000 | Inorganic component (other than water) | 4 |
20090011968 | Upper engine cleaning adaptors used to connect a pressurized unit containing an upper engine cleaner to the vehicles plenum - For decades the slow accretion of carbonaceous deposits on the upper cylinder areas of the internal combustion engines has acted to impair optimum performance and to significantly reduce gasoline or Diesel mileage per gallon. It has now been discovered that these formerly rather intractable engine deposits can be efficiently removed by dispersing and dissolving them through the use of optimized mixtures of polar protic and dipolar aprotic solvents that have the essential capability of acting in concert synergistically. For practical reasons these solvents must have a melting point higher than about 41° F. (5° C.). The finished product must also have a dielectric constant of about 20 and a pH value of at least 11.0 at 77° F. (25° C.). These parameters are considered vital to success. For example, in a test using a blend with a dielectric constant of 15, the removal of the carbonaceous deposits was either de minimus or very limited, even at pH values of 12.0 at 77° F. (25° C.) or higher. However, at a dielectric constant of 20 the degree of removal was quite satisfactory. Preferred compositions of this invention may be utilized in the form of self pressurized (aerosol) dispensers. | 01-08-2009 |
20090305932 | COMPOSITION FOR REMOVING ENGINE DEPOSITS FROM TURBINE COMPONENTS - A method and cleaning composition for removing engine deposits from turbine components, in particular turbine disks and turbine shafts. This method comprises the following steps: (a) providing a turbine component having a surface with engine deposits thereon, wherein the turbine component comprises a nickel and/or cobalt-containing base metal; and (b) treating the surface of the turbine component with a cleaning composition to convert the engine deposits thereon to a removable smut without substantially etching the base metal of the turbine component. The cleaning composition comprises an aqueous solution that is substantially free of acetic acid and comprising: a nitrate ion source in an amount, by weight of the nitrate ion, of from about 470 to about 710 grams/liter; and a bifluoride ion source in an amount, by weight of the bifluoride ion, of from about 0.5 to about 15 grams/liter. The smut that is formed can be removed from the surface of the turbine component in a manner that does not substantially alter the surface thereof. | 12-10-2009 |
20110112002 | METHODS OF CLEANING COMPONENTS HAVING INTERNAL PASSAGES - Methods are provided for cleaning a component having internal passages. A method includes contacting the component with an aqueous hydrogen fluoride solution without agitating the solution for a time period in a range of about 20 minutes to about an hour to dissolve a solid piece of blockage material blocking at least a portion of the internal passages, the aqueous hydrogen fluoride solution comprising, by volume, about 40 percent to about 60 percent hydrogen fluoride and optionally, a corrosion inhibitor, and the blockage material comprising a silicate and rinsing the component with water to remove at least a portion of the aqueous hydrogen fluoride solution from surfaces of the component defining at least a portion of the internal passages. | 05-12-2011 |
20140066349 | COKE COMPOSITIONS FOR ON-LINE GAS TURBINE CLEANING - A particulate coke composition including expandable coke is capable of removing deposits from rotating parts of a gas turbine engine while under full fire or idle speed. The coke composition may be introduced directly into the combustion chamber (combustor) of the gas turbine or, alternatively, anywhere in the fuel stream, water washing system, or the combustion air system. By kinetic impact with the deposits on blades and vanes, the deposits will be dislodged and will thereby restore the gas turbine to rated power output. If introduced into the compressor section, the coke particles impinge on those metal surfaces, cleaning them prior to entering the hot gas section where the process is repeated. | 03-06-2014 |