Class / Patent application number | Description | Number of patent applications / Date published |
507265000 | Organic component is a fat, fatty alcohol, fatty oil, ester-type wax, fatty still residue, or higher fatty acid or salt thereof | 10 |
20080220995 | Suspension of Concentrated Particulate Additives Containing Oil for Fracturing and Other Fluids - The handling, transport and delivery of particulate materials, particularly fine particles, may be difficult. Alkaline earth metal oxide particles such as magnesium oxide (MgO) may be suspended in glycerin and/or alkylene glycols such as propylene glycol up to loadings of 51 wt %. Such suspensions or slurries make it easier to deliver MgO and similar agents into fluids, such as aqueous fluids gelled with viscoelastic surfactants (VES). These concentrated suspensions or slurries may be improved in their stability by the inclusion of minor amounts of a vegetable oil and/or a fish oil. The MgO serves as stabilizers and/or fluid loss control agents for VES-gelled fluids used to treat subterranean formations, e.g. for well completion or stimulation in hydrocarbon recovery operations. The particle size of the magnesium oxide or other agent may be between 1 nanometer to 0.4 millimeter. | 09-11-2008 |
20090054273 | CROSSLINKING COMPOSITION FOR FRACTURING FLUIDS - Improved gelled hydrocarbon fracturing fluids include a gelling agent and a crosslinking composition including a crosslinking agent and a catalytic agent. The catalytic agent is a fatty quaternized amine, which includes monoalkyl benzyl quaternized amines. | 02-26-2009 |
20090305914 | Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof - A method of forming a gelled organic-based fluid is disclosed. The method comprises combining an organic solvent, a viscoelastic surfactant, and a metal carboxylate crosslinker; and forming the gelled organic-based fluid. In a further aspect, the method is used to treat a subterranean formation of a well, for example for a stimulation job as fracturing or the like. | 12-10-2009 |
20090305915 | SUSPENSION OF CONCENTRATED PARTICULATE ADDITIVES CONTAINING OIL FOR FRACTURING AND OTHER FLUIDS - The handling, transport and delivery of particulate materials, particularly fine particles, may be difficult. Alkaline earth metal oxide particles such as magnesium oxide (MgO) may be suspended in glycerin and/or alkylene glycols such as propylene glycol up to loadings of 51 wt %. Such suspensions or slurries make it easier to deliver MgO and similar agents into fluids, such as aqueous fluids gelled with viscoelastic surfactants (VES). These concentrated suspensions or slurries may be improved in their stability by the inclusion of minor amounts of a vegetable oil and/or a fish oil. The MgO serves as stabilizers and/or fluid loss control agents for VES-gelled fluids used to treat subterranean formations, e.g. for well completion or stimulation in hydrocarbon recovery operations. The particle size of the magnesium oxide or other agent may be between 1 nanometer to 0.4 millimeter. | 12-10-2009 |
20090312201 | Nano-Sized Particles for Formation Fines Fixation - A treating fluid may contain an effective amount of a particulate additive to fixate or reduce fines migration, where the particulate additive is an alkaline earth metal oxide alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides piezoelectric crystals and pyroelectric crystals. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help fixate the formation fines. These treating fluids may be used as treatment fluids for subterranean hydrocarbon formations, such as in hydraulic fracturing, completion fluids, gravel packing fluids and fluid loss pills. The carrier fluid used in the treating fluid may be aqueous, brine, alcoholic or hydrocarbon-based. | 12-17-2009 |
20100022421 | Process for preparing thermally stable oil-in-water and water-in-oil emulsions - A method for preparing a thermally stable well servicing fluid in the form of an oil-in-water (O/W) macroemulsion, a water-in-oil (W/O) macroemulsion or a water-in-oil (W/O) microemulsion at the well drilling location is provided. The servicing fluid is prepared by mixing a hydrocarbon phase, a water phase and a surfactant phase to obtain either an O/W macroemulsion, a W/O macroemulsion or a W/O microemulsion. The surfactant phase comprises a first surfactant and/or a second surfactant. The first surfactant comprises a fatty acid mixture and a hygroscopic first additive. The second surfactant comprises a C4-C6 alcohol. Whether or not an O/W macroemulsion, W/O macroemulsion or a W/O microemulsion is produced is determined by the concentration of the phases, the first surfactant, the second surfactant and the timing upon which the first additive, water phase and second surfactant are introduced to the mixture. | 01-28-2010 |
20110015101 | STABILIZATION OF EMULSIONS CONTAINING RESINOUS MATERIAL FOR USE IN THE FIELD OF OIL OR GAS WELL TREATMENTS - According to one aspect of the inventions, emulsion compositions are provided. Emulsions according to this aspect include: (a) a water-insoluble resinous material; (b) water; and (c) an emulsifier, wherein the emulsifier comprises a non-ionic, a cationic, or a zwitterionic emulsifier; wherein the continuous phase of the emulsion comprises the water; wherein a dispersed phase of the emulsion comprises the resinous material; wherein the dispersed phase is in the form of droplets having a size distribution range such that at least 50% of the droplets have a size of 0.5 micrometers-500 micrometers; wherein the resinous material of the droplets is in a concentration of at least 5% by weight of the water; and wherein the composition of the droplets has a viscosity of less than 2,000 Poise measured at 20° F. According to another aspect of the inventions, methods are provided for treating a portion of a subterranean formation. Methods according to this aspect include the steps of: (a) forming an emulsion according to the composition described above; and (b) introducing the emulsion into a portion of a subterranean formation. | 01-20-2011 |
20110071060 | FOAMERS FOR DOWNHOLE INJECTION - This invention relates generally to novel foamer compositions for treatment of oil and gas wells to enhance production. The invention provides a method of foaming a fluid. The method includes introducing into the fluid a foam-forming amount of a composition comprising at least one long chain fatty acid and at least one organic solvent. An example of the long chain fatty acid is tall oil fatty acid and an example of the organic solvent is ethyleneglycol monobutyl ether. | 03-24-2011 |
20120135896 | Compositions and Methods for Controlling Fluid Loss - Alkaline earth metal compounds may be fluid loss control (FLC) agents for viscoelastic surfactant (VES) fluids used for fluid loss control pills, lost circulation material pills and kill pills in hydrocarbon recovery operations. The FLC agents may include, but not be limited to oxides and hydroxides of alkaline earth metal, and in one case magnesium oxide where the particle size of the magnesium oxide is between 1 nanometer to 0.4 millimeter. The FLC agent may alternatively be transition metal oxides and/or transition metal hydroxides. The FLC agent appears to associate with the VES micelles and together form a novel pseudo-filter cake quasi-crosslinked viscous fluid layer that limits further VES fluid flow into the porous media. The FLC agent solid particles may be added along with VES fluids. The pills may also contain internal breakers to reduce the viscosity thereof so that the components of the pill may be recovered. | 05-31-2012 |
20150057197 | Use of Oil-Soluble Surfactants as Breaker Enhancers for VES-Gelled Fluids - Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of an internal breaker composition that contains at least one mineral oil, at least one polyalphaolefin oil, at least one saturated fatty acid and/or at least one unsaturated fatty acid. The internal breaker may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. In one non-limiting embodiment, the internal breaker, e.g. mineral oil, is added to the fluid after it has been substantially gelled. An oil-soluble surfactant is present to enhance or accelerate the reduction of viscosity of the gelled aqueous fluid. | 02-26-2015 |