Class / Patent application number | Description | Number of patent applications / Date published |
502069000 | Heterogeneous arrangement | 7 |
20110053762 | LAYERED MOLECULAR SIEVE COMPOSITION - A composition comprising an inner core and an outer layer comprising a molecular sieve has been prepared. The molecular sieve layer is characterized in that the molecular sieve layers are intergrown into each other. The inner core can be alpha alumina or other inert materials. | 03-03-2011 |
20110124489 | CARBON-BASED MATERIAL COMBUSTION CATALYST, MANUFACTURING METHOD OF THE SAME, CATALYST CARRIER, AND MANUFACTURING METHOD OF THE SAME - A carbon-based combustion catalyst is obtained by calcining sodalite at a temperature of 600° C. or more. Alternatively, a carbon-based combustion catalyst is obtained by performing the following mixing step, drying step, and calcination step. In the mixing step, aluminosilicate (sodalite), and an alkali metal source, and/or an alkaline earth metal source are mixed in water to obtain a liquid mixture. In the drying step, the liquid mixture is heated to evaporate the water, thereby obtaining a solid. In the calcination step, the solid is calcined at a temperature of 600° C. or more so that a part or all of the sodalite structure is changed. The thus-obtained catalyst can cause carbon-based material to be stably burned and removed at a low temperature for a long time. | 05-26-2011 |
20110237426 | MANUFACTURING METHOD OF ZEOLITE STRUCTURE - The manufacturing method includes a mixing step of mixing a plurality of zeolite particles, an inorganic binding material and an organic binder, to prepare a zeolite raw material; a forming step of extruding the zeolite raw material to obtain a formed zeolite article; and a firing step of firing the formed zeolite article to prepare the zeolite structure, the mixing step uses the inorganic binding material containing at least one type of silica sol selected from the group consisting of acid silica sol, silica sol containing silica particles coated with alumina, cationic silica sol, silica sol containing string-like silica particles, and silica sol containing bead-like silica particles, and a content ratio of silica particles contained in the silica sol selected from the group is from 10 to 30 mass % with respect to 100 mass % of the zeolite particles. | 09-29-2011 |
20130165315 | METHOD OF FORMING A HYDROCARBON CRACKING CATALYST - The method of forming a hydrocarbon cracking catalyst provides a method of varying or tuning the mesophase MCM-41 or microporous ZSM-5 properties in biporous ZSM-5/MCM-41 composites, depending on the requirements of the intended application. The method includes the steps of performing a surfactant-mediated hydrolysis of ZSM-5 to form a solution, and then adjusting the pH of the solution to selectively tune the microporous and mesoporous properties of the final ZSM-5/MCM-41 catalyst product. Following tuning, soluble aluminosilicates are hydrothermically condensed to form a mesoporous material over the remaining ZSM-5 particles to form the ZSM-5/MCM-41 composite. The ZSM-5/MCM-41 composite may be used as a hydrocarbon cracking catalyst for cracking gas, oil or the like. | 06-27-2013 |
20130296160 | SURFACE-MODIFIED ZEOLITES AND METHODS FOR PREPARING THE SAME - Surface-modified zeolites and methods for preparing surface-modified zeolites are provided. A hybrid polymer formed from a silicon alkoxide and a metal alkoxide, a co-monomer, or both, is contacted with a zeolite suspension. The zeolite suspension comprises a sodium-, an ammonium-, or a hydrogen-form zeolite and a solvent. The hybrid polymer and zeolite suspension are contacted under conditions sufficient to deposit hybrid polymer on external surfaces of the zeolite to form a treated zeolite. Solvent is removed therefrom. The treated zeolite is dried and calcinated to form a dried and calcinated treated zeolite. Forming of the zeolite suspension and the contacting, removing, drying, and calcinating steps are provided in one selectivation sequence to produce a surface-modified zeolite from the ammonium-form zeolite and the hydrogen-form zeolite. If the dried and calcinated treated zeolite is a sodium-form zeolite, the sodium is exchanged with ammonium and then additionally dried and calcinated. | 11-07-2013 |
20130316895 | FIBROUS SUBSTRATE-BASED HYDROPROCESSING CATALYSTS AND ASSOCIATED METHODS - Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO | 11-28-2013 |
20140011667 | SILICON CARBIDE POROUS BODY, HONEYCOMB STRUCTURE, AND ELECTRIC HEATING TYPE CATALYST CARRIER - A silicon carbide porous body according to the present invention contains silicon carbide particles, metallic silicon, and an oxide phase, in which the silicon carbide particles are bonded together via at least one of the metallic silicon and the oxide phase. The primary component of the oxide phase is cordierite, and the open porosity is 10% to 40%. Preferably, the silicon carbide porous body contains 50% to 80% by weight of silicon carbide, 15% to 40% by weight of metallic silicon, and 1% to 25% by weight of cordierite. Preferably, the volume resistivity is 1 to 80 Ωcm, and the thermal conductivity is 30 to 70 W/m·K. | 01-09-2014 |