Class / Patent application number | Description | Number of patent applications / Date published |
502008000 | FORMING OR TREATING A SPHERE, PROCESS ONLY | 21 |
20120264590 | CARRIER FOR OLEFIN POLYMERIZATION CATALYST, PREPARATION METHOD AND APPLICATION THEREOF - A spheric magnesium compound comprises a reaction product of at least the following components: (a) a magnesium halide having a formula of MgX | 10-18-2012 |
20130102455 | Catalyst for n-butane oxidation to maleic anhydride - A process for the preparation of a promoted VPO catalyst, wherein the catalyst comprises the mixed oxides of vanadium and phosphorus and wherein the catalyst is promoted with at least one of niobium, cobalt, iron, zinc, molybdenum or titanium, said process comprising the steps of
| 04-25-2013 |
20140087936 | CORE-SHELL PARTICLES WITH CATALYTIC ACTIVITY - The present invention pertains to novel core-shell particles comprising a core of iron oxide and a shell of cobalt oxide, characterized in that they are spherical with a number average diameter, as measured by TEM, of between 1 and 20 nm. This invention is also directed to their uses in the manufacture of a catalyst, and to the method for preparing these particles, by precipitating cobalt oxide onto magnetite or hematite particles which are themselves precipitated from Fe(III) and optionally Fe(II) salts. | 03-27-2014 |
20140206526 | ZSM-5 ADDITIVE ACTIVITY ENHANCEMENT BY IMPROVED ZEOLITE AND PHOSPHORUS INTERACTION - A catalytic additive comprising an intermediate pore zeolite, such as ZSM-5 is treated so as to improve propylene yields when the additive is included in a FCC catalytic inventory by first treating the zeolite with a phosphorus compound to incorporate the phosphorus in the zeolite, and mixing the P-treated zeolite with a matrix component comprising kaolin and another phosphorus-containing compound. | 07-24-2014 |
20140256535 | COBALT-BASED NANO CATALYST AND PREPARATION METHOD THEREOF - A cobalt-based nano catalyst including a metal combination as a core and a porous material as a shell. The metal combination includes a first metal component Co, a second metal component selected from Ce, La, and Zr, and a third metal component selected from Pt, Ru, Rh, and Re. The catalyst includes between 10 and 35 wt. % of the first metal component, between 0.5 and 10 wt. % of the second metal component, between 0.02 and 2 wt. % of the third metal component, and a carrier. The carrier is a porous material such as nano silica or alumina. The carrier is in the shape of a spheroid, has a pore size of between 1 and 20 nm and a specific area of between 300 and 500 m | 09-11-2014 |
20140287910 | HOLLOW SPHERICAL ZEOLITE IM-5 AND PREPARATION METHOD THEREFOR - The present invention provides a hollow IM-5 molecular sieve sphere and the preparation process thereof. The process according to the present invention adds a relatively great amount of the surfactant of a cationic quaternary ammonium salt in the IM-5 molecular sieve system, to form a hollow IM-5 molecular sieve sphere via the micelle action by the surfactant, which structure benefits the mass transfer of the reaction process. | 09-25-2014 |
20140329664 | HIGH TEMPERATURE CATALYSTS FOR DECOMPOSITION OF LIQUID MONOPROPELLANTS AND METHODS FOR PRODUCING THE SAME - Ceramic catalyst carriers that are mechanically, thermally and chemically stable in a ionic salt monopropellant decomposition environment, high temperature catalysts for decomposition of liquid high-energy-density monopropellants and ceramic processing techniques for producing spherical catalyst carrier granules are disclosed. The ceramic processing technique is used to produce spherical catalyst carrier granules with controlled porosities and desired composition and allows for reproducible packing densities of catalyst granules in thruster chambers. The ceramic catalyst carrier has excellent thermal shock resistance, good compatibility with the active metal coating and metal coating deposition processes, melting point above >2300° C., chemical resistance to steam, nitrogen oxides and nitric acid, resistance to sintering to prevent void formation, and the absence of phase transition associated with volumetric changes at temperatures up to and beyond 1800° C. | 11-06-2014 |
20140349836 | PROCESS FOR PREPARING NICKEL BASED CATALYSTS FOR SCR OF NATURAL GAS - The present invention relates to a method for preparing a nickel-based catalyst for steam carbon dioxide reforming (SCR) of natural gas using steam and carbon dioxide, more particularly to a method for preparing a nickel-based catalyst represented by Ni/η-Al | 11-27-2014 |
20140357471 | METHOD FOR MANUFACTURING OF SPHEROIDAL ALUMINA PARTICLES - The present invention concerns spheroidal alumina particles, catalysts comprising such particles as a support and a process for the production of spheroidal alumina particles, comprising the following steps:
| 12-04-2014 |
20150099622 | SELECTIVE SURFACE IMPREGNATION METHOD FOR CATALYTICALLY ACTIVE MATERIALS ON PARTICULATE CATALYST SUPPORT USING MUTUAL REPULSIVE FORCE AND SOBLUBILITY DIFFERENCE BETWEEN HYDROPHILIC SOLVENT AND HYDROPHOBIC SOLVENT - A method for preparing a catalyst having catalytically active materials selectively impregnated or supported only in the surface region of the catalyst particle using the mutual repulsive force of a hydrophobic solution and a hydrophilic solution and the solubility difference to a metal salt precursor between the hydrophobic and hydrophilic solutions. The hydrophobic solvent is a C2-C6 alcohol. The hydrophobic solvent is introduced into the catalyst support and then removed of a part of the pores connected to the outer part of the catalyst particle by drying under appropriate conditions. Then, a hydrophilic solution containing a metal salt is introduced to occupy the void spaces removed of the hydrophobic solvent, and the catalyst particle is dried at a low rate to selectively support or impregnate the catalytically active material or the precursor of the catalytically active material only in the outer part of the catalyst particle. | 04-09-2015 |
502009000 | Forming other than by liquid immersion | 7 |
20080318762 | Agglomerated Animal Litter - Lightweight composite particles, primarily comprising various bentonite clays, but which may include other functional solid particles, are formed by introducing expanding gases or air into the particle forming process. The methods presented create the ability to reduce the bulk density of the composite particles while maintaining and in some cases even increasing the particle strength. | 12-25-2008 |
20120184428 | CATALYST CARRIER FOR A SPACECRAFT THRUSTER AND METHOD FOR PREPARING SAME - The present invention relates to a carrier for supporting a catalyst for a spacecraft thruster and to a method for preparing the same, and more particularly, to a catalyst carrier for a spacecraft thruster and method for preparing the same, in which the diameter and distribution of pores of the carrier are controlled using a pore inducing material to lengthen the life of the catalyst. | 07-19-2012 |
20120283088 | Mixed Oxide Catalysts Made of Hollow Shapes - The invention relates to mixed oxide catalysts made of hollow shapes for the catalytic gas phase oxidation of olefins, and to a method for producing the catalysts by applying them as a layer to a carrier made of organic material and removing said organic material. The reaction into aldehydes and carboxylic acids occurs by air or oxygen in the presence of inert gases in different quantity ratios, at elevated temperatures and pressure in the presence of said catalysts. | 11-08-2012 |
20130217565 | Method of forming nano-pads of catalytic metal for growth of single walled carbon nanotubes - Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. | 08-22-2013 |
20140094359 | GAS SEPARATION ADSORBENTS AND MANUFACTURING METHOD - The present invention generally relates to high rate adsorbents and a method for their manufacture involving the steps of component mixing, extrusion, spheronization and calcination. The component mixing can involve both dry mixing in addition to wet mixing of an adsorbent with a binder, if required, and a fluid such as water. The paste so formed from the mixing stage is extruded to produce pellets which are optionally converted to beads by spheronization using in one embodiment, a marumerizer. The product is harvested and calcined to set any binder or binders used and/or burn out any additives or processing aids. This basic manufacturing scheme can be augmented by extra processing steps including ion exchange and activation to alter the composition of the adsorbents, as required. | 04-03-2014 |
20140155253 | METHOD OF FORMING NANO-PADS OF CATALYTIC METAL FOR GROWTH OF SINGLE WALLED CARBON NANOTUBES - Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. | 06-05-2014 |
20140371053 | METHOD OF PRODUCING FCC CATALYSTS WITH REDUCED ATTRITION RATES - FCC catalysts having improved attrition resistance are provided by mixing a cationic polyelectrolyte with either zeolite crystals or a zeolite-forming nutrient and/or a matrix material, prior to or during formation of a catalyst microsphere. | 12-18-2014 |
502010000 | Treating preformed sphere only | 4 |
20120316055 | Method For Production of Catalyst Having Supporting Surface - A method for supporting a catalytic metal on the surface of a carrier by bringing an aqueous catalytic metal salt solution into contact a porous carrier. The method includes the steps of: impregnating the carrier with a liquid hydrophobic organic compound before bringing the aqueous catalytic metal salt solution into contact with the carrier, and drying the impregnated carrier to volatilize the hydrophobic organic compound on the surface of the carrier, followed by bringing the carrier into contact with the aqueous catalytic metal salt solution; and then bringing a reducing agent into contact with the catalytic metal salt on the surface of the carrier to reduce the catalytic metal salt to undergo insolubilization treatment. The catalytic component is supported in a region from the surface of the carrier to a depth of 50 μm or more and 500 μm or less. The supported state of the catalytic component is made controllable, and the catalytic component can be supported in the inner part of the carrier with a suitable depth. | 12-13-2012 |
20140038809 | CATALYST SUPPORTED ON ALUMINA FOR USE IN POLYMERIZATION OF OLEFINS AND METHOD OF PREPARING THEM - The present invention relates to a supported catalyst for the polymerization of olefins. More specifically, the present invention provides a catalyst comprising a spherical alumina support modified by the addition of a magnesium compound containing a magnesium alkoxide and the product of the reaction of it with a titanium halide. The present invention also relates to the method for preparing said supported catalyst. | 02-06-2014 |
20140302981 | ACTIVATED CARBON WITH A METAL BASED COMPONENT - The invention relates to an activated carbon, in particular an activated carbon with reactive and/or catalytic activity, said activated carbon being in the form of discrete activated carbon particles, preferably in a spherical and/or grain form. The activated carbon is provided with and/or comprises at least one metal component which has at least one metal-containing ionic liquid (IL) containing, in particular metal ions, preferably based on a metal compound. The invention also related to methods for producing said activated carbon, to the uses thereof and to materials provided herewith. | 10-09-2014 |
20150306573 | CORE-SHELL PARTICLES WITH CATALYTIC ACTIVITY - The present invention pertains to novel core-shell particles comprising a core of alumina and a shell of cobalt oxide, characterized in that they are spherical with a number average diameter, as measured by TEM, of between 10 and 30 nm. This invention also pertains to the method for preparing these core-shell particles and to their uses in the manufacture of a catalyst. | 10-29-2015 |