Class / Patent application number | Description | Number of patent applications / Date published |
477174000 | Condition responsive control | 79 |
20080207397 | Clutch Controller, Method for Controlling Clutch, and Straddle-Type Vehicle - A clutch controller that transmits appropriate torque during engaging operation of a clutch and prevents excessive increase or decrease in engine speed. The clutch controller performs request follow-up control under which a clutch actuator is actuated based on a difference between actual transmission torque that is transmitted from a drive-side member to a driven-side member of a clutch, and request transmission torque that is determined based on a rider's accelerator operation, such that the actual transmission torque approximates the request transmission torque. In an operation range in which engine torque increases as engine speed increases, the clutch controller performs rotational speed induction control, in place of request follow-up control, under which the clutch actuator is actuated such that engine speed increases or decreases to a predetermined engine speed. | 08-28-2008 |
20080227601 | Method For Controlling a Manual Transmission in the Event of a Disorderly Engine Behavior - A method for controlling a partially unsynchronized manual transmission, which realizes the increase of a rotational speed of a transmission part to be synchronized during a gear change procedure by connecting one element of the transmission, via a shiftable clutch, to a drive motor and by making available to this drive motor the required rotational speed as well as the necessary torque at its output shaft. It is also provided that when the rotational speed and/or the torque made available by the drive motor is not sufficient to ensure the synchronization of the manual transmission within a fixed time period, a shifting strategy is pursued, which prevents an unintentional holding of the manual transmission in its neutral position or idle position. | 09-18-2008 |
20080287259 | Electronic Control Fuel Save Clutch Device for Vehicle - The present invention relates to an electronic control fuel saving clutch device for a vehicle, comprising: an electronic control clutch ( | 11-20-2008 |
20080300107 | Method for Clutch Disengagement - A method for controlling clutch disengagement in a vehicle having an automated manual transmission including an electronically controlled clutch includes 1. sensing at least two brake pedal positions separated in time, 2. performing a differentiation of the sensed brake pedal positions, 3. comparing the result of the differentiation to a first predetermined threshold value, and 4. controlling the clutch to disengage if the result of the differentiation represents a faster brake pedal application than a predetermined threshold value. | 12-04-2008 |
20080305931 | Method for checking the plausibility of the position of the clutch actuator of a clutch, method for determining the touch point of a clutch, and device for carrying out the method - A method for checking the plausibility of an actuation position of a clutch of a double-clutch transmission operated by an actuator, including the following steps: disengaging the clutch assigned to the currently active old subtransmission and simultaneously engaging the clutch assigned to the other subtransmission to shift from the gear selected in the old subtransmission to a gear selected in the other, new subtransmission; deselecting the gear selected in the old subtransmission still during the overlapping operation of the clutches or immediately thereafter; detecting the difference between the speed of rotation of a drive shaft of the double-clutch transmission driven by a drive motor and the speed of rotation of the input shaft of the old subtransmission; and evaluating the state of the clutch assigned to the old subtransmission as disengaged when the difference in speeds of rotation exceeds a predetermined value within a predetermined time after deselection of the gear. | 12-11-2008 |
20090036269 | Limp home mode driving method for hybrid electric vehicle and engine clutch control hydraulic system for limp home driving - The present invention provides a limp home mode driving method for a hybrid electric vehicle and an engine clutch control hydraulic system for driving in the limp home mode. At a hydraulic circuit for supplying hydraulic fluid to an engine clutch mounted between an engine and a driving motor, an engine clutch control hydraulic system is installed and includes an engine clutch control solenoid valve which controls the supply of hydraulic fluid to the engine clutch. As the engine clutch control solenoid valve, a normal high type solenoid valve is used which always keeps an internal passage open for engine clutch hydraulic fluid so that the engine clutch control pressure is at its maximum when power is cut off. Thus, when engine clutch control solenoid valve power goes off due to a failure, hydraulic fluid is supplied to the engine clutch through the internal passage and the engine clutch is closed. Thus, the engine is connected to the driving motor, and the vehicle limp home driving by the drive power of the engine can be accomplished by driving the engine. | 02-05-2009 |
20090062071 | TORQUE TRANSFER CONTROL SYSTEM FOR POWER TRANSMISSION DEVICE IN A MOTOR VEHICLE - A torque transfer mechanism includes a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. A control system determines a desired quantity of torque to deliver to the second rotary member and controls the clutch to produce the desired torque. | 03-05-2009 |
20090124458 | DUAL-DRIVE TRANSMISSION - A dual-drive transmission, comprising a front shaft, a back shaft, a rear axle housing having a pair of half shafts, a central propeller shaft, a hub, and an electromagnetic splined clutch; a forestage gear is disposed on the central propeller shaft, a drive gear engaged with the forestage gear is disposed on the front shaft, a pair of one-way transmission gears is disposed one on each end of the central propeller shaft, a final drive gear is disposed on the hub, a driven gear engaged with the forestage gear is disposed on one end of the back shaft, and the electromagnetic splined clutch is axially connected to the back shaft. | 05-14-2009 |
20090131222 | SYSTEM AND METHOD FOR CONTROLLING MACHINE COMPONENT TEMPERATURES - The temperature of a machine component is controlled by transferring heat generated by a torque converter under restricted conditions to the component. The machine includes a circulating fluid system configured to transfer heat from the torque converter to the remotely positioned machine component. A controller is configured to sense the temperature of the component, and to restrict motion of the torque converter turbine when the sensed temperature is below a desired temperature. Heat generated by the torque converter under the restricted condition is transferred through the circulating fluid system to the remote component, such as the machine power source, to control the temperature thereof. | 05-21-2009 |
20090170659 | METHOD FOR OPERATING AN AUTOMATIC FRICTION CLUTCH - A method for operating an automated friction clutch in which a clutch load, corresponding to an energy input, is determined and the operation of the clutch is controlled as a function of the clutch load determined. Glazing of the clutch lining that results from too low an energy input, in relation to the slipping operation time of the clutch, is compensated by a specific increase of the clutch load, while premature wear is prevented by a specific reduction of the clutch load. | 07-02-2009 |
20090209392 | METHOD FOR ACTIVATING A VEHICLE CLUTCH - A method for activating a clutch of a vehicle drive train. A controller of an electronic control unit generates an electrical desired-value signal corresponding to a desired pressure with which the clutch is to be acted upon. The control unit receives from a sensor an electrical actual-value signal which is to correspond to an actual pressure with which the clutch is acted upon. The sensor measures the pressure at a measurement location which is connected via a transfer link to an action location at which the clutch is acted upon with a clutch pressure. The actual-value signal passes through a transfer element having a delay property before it is delivered to the controller. | 08-20-2009 |
20090239707 | ACTIVE FUEL MANAGEMENT MODE TORQUE CONVERTER CLUTCH CONTROL - A system comprises a slip module and a gas temperature module. The slip module adjusts slipping of a clutch of a torque converter based on a first slip value before a cylinder of an engine is deactivated. The gas temperature module determines a temperature of a gas within the cylinder after the cylinder is deactivated. The slip module determines a second slip value based on the temperature of the gas and adjusts the slipping of the clutch based on the second slip value, wherein the second slip value is less than the first slip value. | 09-24-2009 |
20100048355 | POWER TRANSMISSION DEVICE - The present invention provides a power transmission device that can reliably prevent engine stall from occurring. The power transmission device includes a transmission clutch | 02-25-2010 |
20100075804 | METHOD FOR CLUTCH PROTECTION - Method for protecting a clutch of a vehicle, said vehicle being provided with an engine, drive wheels and an automated manual transmission for transmitting drive power from said engine to said drive wheels. A controller can execute the steps of: sensing a power demand from the driver which results in a clutch control where the clutch is partly engaged and clutch slip occurs, measuring travelling distance(s) of the vehicle during a predetermined first time interval, initiating a first warning measure, in order to alert the driver of excessive clutch slip, if the vehicle has traveled less than a predetermined distance during said predetermined first time interval. | 03-25-2010 |
20100204010 | METHOD AND DEVICE FOR CONTROLLING A CLUTCH - A method and a device for controlling a clutch, for example an automatic friction clutch forming part of a drive train of a motor vehicle, for a torque transfer between an engine and a transmission, with the clutch having significant clutch way points assigned to it. For achieving the operational readiness of the clutch over the shortest possible time period, whereby an accurate clutch adjustment is still guaranteed, a clutch way point coordinate system is monitored by checking the point of engagement of the clutch, established through a learning process and having at least a relevant clutch way point for the starting procedure. In case of any recognized change(s), the clutch way point is suitably corrected or otherwise used as is. | 08-12-2010 |
20100234178 | ELECTRONIC CLUTCH CONTROL APPARATUS FOR VEHICLE - An electronic clutch control apparatus is provided for a vehicle having a clutch assembly and a clutch lever operatively associated with the clutch assembly. The electronic clutch control apparatus includes an actuator for driving a clutch assembly, an operation amount sensor for sensing an operation amount of a clutch lever, an electronic control unit for controlling the operation of the actuator based on the detected operation amount received from the operation amount sensor, and a feedback unit for applying an operation reaction force to the clutch lever. The feedback unit includes a plurality of springs having different spring constants. The feedback unit is configured such that when the clutch lever is operated in an operation amount increasing direction thereof, the operational reactive elastic forces of the plural springs are sequentially applied to the clutch lever. | 09-16-2010 |
20100311543 | APPARATUS FOR IMPROVING VEHICLE FUEL EFFICIENCY - An apparatus for improving fuel efficiency of a vehicle is provided, including an engine, a generator system and an air-conditioning system. The generator system and the air-conditioning system are connected respectively through transmission elements and a moveable first active transmission wheel and a second active transmission wheel on the engine core axis. A first clutch is placed between the crank shaft of the engine and the first active transmission wheel, and a second clutch is placed between the first active transmission wheel and the second active transmission wheel. Also, a control circuit is provided to control the operation of the first clutch and the second clutch, in order to control the driving and rotation of the first active transmission wheel and/or the second active transmission wheel. The control circuit further determines according to the signal whether power is provided directly to the generator system and further drives the air-conditioning system. | 12-09-2010 |
20110136623 | METHOD FOR POSITIONING AN ENGINE - A method for positioning an engine, a clutch of a transmission of the engine being activated in a targeted manner and engaged in a controlled manner during the deceleration process of the engine. Also, a system for positioning an engine. | 06-09-2011 |
20110183811 | HYDRAULIC CLUTCH FILL CONTROL SYSTEMS FOR A TRANSMISSION OF A VEHICLE - A method of filling a clutch chamber of an automatic transmission includes determining an engage pressure to engage a clutch of the automatic transmission. The method determines a reactive pressure of a return spring of the clutch. The method also estimates a fill pressure based on the engage pressure and the reactive pressure. The method estimates a flow rate based on the engage pressure, and generates a fill pressure command signal to fill the clutch chamber based on the fill pressure, the flow rate and a flow rate limit. | 07-28-2011 |
20110263383 | SHIFT SEQUENCING SYSTEMS FOR A DUAL CLUTCH TRANSMISSION - A dual-clutch transmission (DCT) shift sequencing system includes a shift type module that determines a shift type based on a scheduled gear and a current attained gear of a DCT. A shift sequence module determines a sequence index based on the shift type. A sequencing module generates a fork command signal and a clutch command signal based on a first sequencing table corresponding to the sequence index. A shift abort module may be included to terminate an ongoing shift and to transition to an updated shift. A fork control module controls fork shifting in the DCT based on the fork command signal. A clutch control module controls clutch engagement in the DCT based on the clutch command signal. | 10-27-2011 |
20110275479 | QUICK SKIP-AT-SYNC CONTROL SYSTEM AND METHOD - A control system includes a shift stage determination module and a clutch control module. The shift stage determination module determines a duration of a first power-on downshift when a second power-on downshift is requested, where a power-on downshift is a downshift of a transmission that occurs when an accelerator pedal is depressed. The clutch control module completes the first power-on downshift and selectively starts controlling the second power-on downshift before the first power-on downshift ends. | 11-10-2011 |
20110287893 | METHOD FOR CONTROLLING THE FUNCTIONING OF A TWIN INTERNAL COMBUSTION ENGINE IN A VEHICLE, ESPECIALLY A FIRE-FIGHTING VEHICLE - Method for controlling the functioning of two heat engines connected to a torque distributor ( | 11-24-2011 |
20120115681 | METHOD FOR CONTROLLING A FRICTION CLUTCH - A method for controlling a friction clutch operatively arranged between a drive unit and a gearbox. The method includes the steps of detecting torque transmitted by the friction clutch, determining a coefficient of friction between friction linings of a clutch disk and antifriction surfaces of the friction clutch, and evaluating the functional capability based on the determined coefficient of friction. In order to avoid an evaluation of a friction clutch that has not yet been broken-in as a worn friction clutch, the evaluation is postponed during a specified breaking-in phase of the friction clutch. | 05-10-2012 |
20120214643 | METHOD AND DEVICE FOR ACTUATING A SHIFT ELEMENT OF AN AUTOMATIC TRANSMISSION HAVING A START-STOP MEANS - A method and device for actuating a shift element of an automatic transmission having a start-stop function and a pressure medium pump driven by an internal combustion engine. The shifting elements are clutches or brakes that can be actuated by a piston which is actuated for engagement via pressure supplied to a pressure space. The pressure space is depressurized when the engine stops. To enhance start-stop operation, the shifting elements comprise an additional pressure space that acts, in opposition to the pressure space acting in the engaging direction, as a controllable restoring mechanism which can be rendered inactive, if desired. If the engine stops and the automatic start-stop function is activated, the additional pressure spaces, acting in the restoring direction, are depressurized before the pressure drop in the pressure spaces, acting in the engaging direction, of the pistons, but are otherwise permanently pressurized during driving operation. | 08-23-2012 |
20130109535 | SYSTEM AND METHOD FOR REGULATING TORQUE TRANSMISSION IN A VEHICLE POWERTRAIN AND A VEHICLE POWERTRAIN USING SAME | 05-02-2013 |
20130150212 | DAMPER CLUTCH CONTROL APPARATUS OF AUTOMATIC TRANSMISSION AND METHOD FOR THE SAME - A damper clutch control apparatus for an automatic transmission may include a driving information detection unit detecting driving information including a displacement amount of an accelerator pedal, an engine speed, an engine torque, and a rotation speed of a turbine, a control portion which receives the driving information and realize a release control of a damper clutch when a driver's intention for acceleration or deceleration of a vehicle may be detected in a state of connection of the damper clutch, and an actuator which controls hydraulic pressure supplied to the damper clutch so as to realize connection or release of the damper clutch according to a control signal received from the control portion. | 06-13-2013 |
20140005000 | METHOD FOR CONTROLLING A FRICTION CLUTCH | 01-02-2014 |
20140080673 | VEHICLE AND METHOD OF CONTROLLING A VEHICLE - Embodiments of the present invention provide a motor vehicle having: a prime mover; first and second groups of one or more wheels; and a driveline to connect the prime mover to the first and second groups of one or more wheels such that the first group of one or more wheels and not the second group may be driven by the prime mover when the driveline is in a first mode of operation and both the first and second group of one or more wheels may be driven by the prime mover when the driveline is in a second mode of operation, the driveline including an auxiliary portion comprising a first releasable torque transmitting means, a prop shaft and a second releasable torque transmitting means, the first releasable torque transmitting means being operable to connect a first end of the prop shaft to the prime mover, the second releasable torque transmitting means being operable to connect a second end of the prop shaft to the second group of one or more wheels, the vehicle further comprising control means operable to control the first and second torque transmitting means to switch the driveline between the first and second modes of operation such that in the first mode the prop shaft is disconnected from both the prime mover and said second group of one or more wheels by means of the first and second releasable torque transmitting means, in the first mode the control means being operable automatically to connect the prop shaft to only one selected from amongst the prime mover and the second group of one or more wheels by means of the first or second releasable torque transmitting means responsive to a value of a temperature parameter determined by the control means, the temperature parameter corresponding to a temperature of a component of the vehicle. | 03-20-2014 |
20140094344 | METHOD AND CONTROL SYSTEM FOR OPENING THE DRIVETRAIN OF A MOTOR VEHICLE - A system and method for selectively opening a drivetrain of a vehicle is described. In one example, an electrically operated clutch is opened during selected driving conditions to conserve kinetic energy of the vehicle. The method may reduce fuel consumption during selected conditions. | 04-03-2014 |
20140141935 | METHOD AND APPARATUS OF PROPELLING A VEHICLE - A vehicle includes a clutch that couples an engine to a transmission via a flywheel, a clutch actuator, and a controller configured to receive an obstructed launch command, elevate an engine operation, for a fixed period of time, beyond a typical launch operation upon receipt of the obstructed launch command, and engage the clutch against the flywheel for at least a portion of the fixed period of time. | 05-22-2014 |
20140296032 | HYDRAULIC CONTROL DEVICE - A hydraulic control device includes an accumulator configured to accumulate oil supplied by a mechanical pump and supply the accumulated oil to a C1 control system (clutch) by discharging the accumulated oil; a first oil passage connected to the hydraulic route (clutch oil passage) on an upstream side of a SLC linear solenoid; a second oil passage connected to the hydraulic route on a downstream side of the manual valve; and connection control unit (a switching valve and a pressure accumulation control valve) configured to control the connection between the accumulator and the hydraulic route so that the accumulator is in communication with one of the first oil passage and the second oil passage. | 10-02-2014 |
20140378276 | METHOD AND SYSTEM FOR CONTROL OF A CLUTCH AT A VEHICLE - A method for controlling a clutch which pertains to a vehicle and which is operated by means of a vehicle control system. The vehicle is provided with an engine, and a driver of the vehicle requests propulsive force from the engine. A first propulsive force requested by the driver and transmitted via a clutch involves determining whether the clutch slips while transmitting the first propulsive force. When the clutch slips during transmission of the first propulsive force, the propulsive force transmitted by the clutch increases. The invention relates also to a system and a vehicle. | 12-25-2014 |
20150353091 | CONTROL DEVICE FOR VEHICLE AND METHOD OF CONTROLLING VEHICLE - A control device for a vehicle includes a control unit configured to: implement a first travelling mode of engaging a power connecting/disconnecting device at a time an accelerator opening is greater than a fully closed state and not greater than a first opening; implement a second travelling mode of releasing the power connecting/disconnecting device at a time the accelerator opening is greater than the first opening and smaller than a second opening; implement a third travelling mode of stopping a fuel supply to an engine with the power connecting/disconnecting device engaged at a time the accelerator opening is fully closed; and control an output of the engine so that a vehicle deceleration at a time of implementing the first travelling mode gradually changes. | 12-10-2015 |
20160194007 | CONTROL SYSTEM FOR VEHICLE | 07-07-2016 |
477175000 | Speed responsive | 44 |
20080207398 | METHOD AND APPARATUS FOR RETARDING AN ENGINE - A method and system for retarding an engine of a machine is provided. The machine has a hydraulic pump driven by the engine, a motor driven by the hydraulic pump, and a fan driven by the motor. The method includes sensing the operating speed of the engine with an engine speed sensor. The method also includes operating the motor at a first pressure. The method also includes comparing the operating speed to a trigger speed. The method also includes operating the motor at a second pressure greater than the first pressure if the operating speed of engine exceeds the trigger speed by a predetermined value. | 08-28-2008 |
20080207399 | Gear Change Control Device, Straddle-Type Vehicle, and Method of Controlling Gearbox - Riding comfort of a vehicle is improved by reducing deceleration and acceleration exceeding the expectation of a rider due to gear changes. A gear change control device calculates current torque being transmitted from a drive-side member of a clutch to a driven-side member of the clutch, and calculates post-completion torque estimated to be transmitted from the drive-side member to the driven-side member after the completion of engagement of the clutch. The gear change control device then controls the degree of engagement of the clutch according to the difference between the current torque and the post-completion torque, and receives a next gear change command according to the difference between the current torque and the post-completion torque. | 08-28-2008 |
20080280729 | Vehicle and four wheeled vehicle for irregular ground - A vehicle according to the present invention includes a first detecting means for detecting an engine speed, a second detecting means for detecting a rotational speed of a rotating member, an engine speed changing means for changing the engine speed, and a control unit. The control unit is electrically connected to the first detecting means, the second detecting means, and the engine speed changing means and controls the engine speed changing means such that when the rotational speed of the rotating member detected by the second detecting means is lower than a set rotational speed previously set in a range from zero to a rotational speed of the rotating member during rotation of the engine in a range between a speed more than an idle rotational speed and a speed less than a predetermined maximum limit rotational speed. | 11-13-2008 |
20080287260 | Speed Controlled Spring Return Actuator - An actuator including a motor, clutch, gear train, solenoid, clock spring, and air brake is provided. The motor is configured to drive a control valve. The clutch is operably coupled to the motor and configured to prevent the motor from transferring more than a predetermined amount of torque. The gear train is operably coupled to the clutch and configured to receive the predetermined amount of torque from the motor. The solenoid is operably coupled to the gear train and configured to disengage one of the gears in the gear train from adjacent gears. The clock spring is operably coupled to another of the gears in the gear train, configured to store mechanical energy supplied by the motor, and configured to drive the control valve. The air brake is operably coupled to the gear train and configured to dissipate a portion of the mechanical energy released by the clock spring. | 11-20-2008 |
20080312038 | Shift Control Device and Shift Control Method for Vehicle - A shift control device and a shift control method for a vehicle for reducing shift shock by taking into account the difference in vehicle speeds before and after shifting. In one of the main inventions, the clutch pressure of another clutch (forward clutch) is controlled to match a target vehicle speed to a calculated actual vehicle speed by the time of start of the connecting operation of a selected speed stage clutch. Since such control is performed so that the vehicle speed is caused to match the target vehicle speed, an actual vehicle speed change rate is held within a predetermined range in at least the instant that the connecting operation of the selected speed stage clutch is started. Also, in another one of the main inventions, as shown in FIG. | 12-18-2008 |
20090088298 | CLUTCH CONTROL SYSTEM FOR SADDLE RIDING TYPE VEHICLE - A grip force of a driving wheel is maintained by identifying an actual condition of a motorcycle and controlling a clutch in a timely manner. A clutch control system includes a clutch, an actuator unit causing the clutch to engage or disengage, a rear wheel speed sensor, a front wheel speed sensor, a clutch lever sensor and a controller controlling a control motor based on a rear wheel speed and a front wheel speed. When the rear wheel speed is lower than the front wheel speed and an absolute value of a difference between the rear wheel speed and the front wheel speed is greater than a threshold value, the control motor is driven so as to reduce a transmission force of the clutch. When an operational amount of the clutch lever is greater than a threshold value, processing to reduce the transmission force of the clutch is suspended. | 04-02-2009 |
20090137364 | VEHICLE SHIFT CONTROL APPARATUS - A vehicle shift control apparatus is basically provided with an engine, a drive wheel, a transmission and a controller. The transmission is operatively disposed between the engine and the drive wheel for shifting gears by executing a clutch switch operation so as to change a drive transmission path of the transmission. The controller is operatively to the transmission to control a gear shifting of the transmission. The controller includes an engine speed suppressing section that is configured to execute an engine speed suppression control when a driver performs an accelerator operation during the clutch switch operation associated with downshifting while coasting. The engine speed suppression control is further configured to reduce a torque capacity decrease rate of a clutch being released in comparison with a torque capacity decrease rate that would occur if shifting was taking place during normal coasting in which the accelerator operation is not performed. | 05-28-2009 |
20090137365 | METHOD FOR CONTROLLING A CLUTCH - A method of controlling a clutch in a motor vehicle and a motor vehicle adapted to perform this method are suggested, in particular resulting in a good starting phase action for supercharged diesel motors. The method comprises the method steps of: setting a clutch torque that is transmitted by a clutch by a plurality of clutch characteristics; determining by a respective clutch characteristic the clutch torque for a particular motor load depending on the rotational speed of the motor; dividing the clutch characteristics into a low speed range and into a full load range; increasing within the low speed range at a constant rotational speed of the motor the transmitted clutch torque with increasing the motor load; and transmitting in the full load range in comparison to the low speed range lower clutch torques at the same rotational speed of the motor. | 05-28-2009 |
20090264253 | Clutch control system - A clutch control system is interposed between an engine and a piece of driven equipment. The clutch control system includes a clutch assembly with input and output speed sensors for providing signals corresponding to the shaft rotational speeds of the engine and the driven equipment, respectively. A pressure sensor is connected to the clutch assembly and provides an output signal corresponding to clutch pressure. A temperature sensor is also associated with the clutch assembly and provides a temperature signal corresponding to the operating temperature of the clutch assembly. Transducers of various types are also employed to sense operating conditions such as shock loads or the like. Also included is a machine control system connected to the driven equipment and an engine control module connected to the engine, both of which are interconnected through an SAE J1939 CAN to the clutch control unit. These signals are passed to a clutch control unit that employs the signals to assess the operating conditions of the system and accordingly adjust the clutch pressure through a pressure control valve. A vast array of operating data is available from the system and is employed by the clutch control unit to ensure optimum operation, by tailoring the clutch pressure to the engine and driven equipment, thus minimizing clutch slippage and avoiding or instantaneously correcting shock load situations. | 10-22-2009 |
20100041515 | AUTOMATIC CLUTCH CONTROL APPARATUS - In an automatic clutch control apparatus according to one embodiment of the invention, with respect to a pressure-disengaged type of automatic clutch ( | 02-18-2010 |
20100105523 | Vehicle Launch Using a Transmission Clutch - A method for controlling a transmission input clutch during a vehicle launch includes determining a desired clutch torque, a desired engine torque, a desired vehicle acceleration and a desired engine speed, determining a change in clutch torque and a change in engine torque with reference to the first and second errors and current operating conditions, applying to the clutch an updated clutch torque capacity whose magnitude is the sum of the desired clutch torque and the change in engine torque, and producing an updated engine torque whose magnitude is the sum of the desired engine torque and the change in engine torque. | 04-29-2010 |
20100113221 | SYSTEM AND METHOD OF DRIVING AND CONTROLLING PNEUMATIC AND HYDRAULIC SYSTEMS - The present invention relates generally to systems and methods of driving and controlling pneumatic and hydraulic devices and, more particularly, to a system and method of driving a hydraulic pump via one output shaft of a motor, and driving a pneumatic compressor via another output shaft of the motor via a clutch. When a user control is engaged, a control system causes the motor to operate at a higher speed, driving the hydraulic pump faster to produce additional hydraulic pressure. When a low air pressure condition is sensed in the pneumatic system, the control system causes the motor to operate at the higher speed and engages the clutch, allowing the pneumatic compressor to supply additional air pressure. | 05-06-2010 |
20100204011 | VEHICLE CONTROLLER AND CONTROL METHOD - The invention relates to a controller for a vehicle having installed thereon a drive power source, a transmission, and a torque converter that is equipped with a lockup clutch and is provided between the drive power source and the transmission. The controller includes a detection unit that detects an actual revolution speed of the drive power source, and a control unit that controls the lockup clutch so that a state of the lockup clutch becomes any state from among a disengaged state, an engaged state, and a slip state. When executing a slip control, the control unit compares the actual revolution speed with the target revolution speed, and feedback controls a transmission torque of the lockup clutch on the basis of a comparison result of the actual revolution speed and a target revolution speed so as to cause the actual revolution speed to follow the target revolution speed. | 08-12-2010 |
20100216597 | HYDRAULIC SYSTEM OF A GEAR BOX - An automatic vehicle transmission comprises a first oil supply unit ( | 08-26-2010 |
20100298093 | CONTROL APPARATUS OF CLUTCH MECHANISM - This apparatus is provided with a clutch mechanism | 11-25-2010 |
20120028759 | VEHICULAR POWER TRANSMISSION CONTROL APPARATUS - When a gear position at a higher speed range than a “specific gear position at a lower speed range” (e.g., first speed) is determined (when the torsional vibration is difficult to occur), a clutch torque is controlled such that a clutch is in a totally engagement state (a revolution speed Ne of an output shaft of an engine=revolution speed Ni of an input shaft of a transmission). On the other hand, when the “specific gear position at the lower speed range” (e.g., first speed) is determined (when the torsional vibration is easy to occur), the clutch torque is controlled such that the clutch is in the semi-engagement state (Ne−Ni=predetermined positive value A). In the semi-engagement state, a “damping action by a slip on the clutch” is acted on the torsional vibration, whereby the amplitude of the torsional vibration can be reduced. | 02-02-2012 |
20120142494 | COAST STOP VEHICLE AND CONTROL METHOD THEREOF - A coast stop vehicle which executes coast stop control for stopping an engine during the travel of a vehicle, is provided with a frictional engagement element provided between the engine and a driving wheel, a first deceleration calculating unit which calculates first deceleration, which is rotation deceleration of a rotation shaft on the driving wheel side of the frictional engagement element, and an engagement-state control unit which controls an engagement state of the frictional engagement element so that decrease of the engine rotation speed is suppressed on the basis of the first deceleration while the coast stop control is executed. | 06-07-2012 |
20120270702 | POWER TRANSMITTING APPARATUSES - A power transmitting apparatus for a vehicle mounted with a torque converter and an idle-stop mechanism can be configured to improve fuel economy without cancelling a fuel-cut-ff during vehicle speed reduction and to reduce the manufacturing cost by eliminating an electrically-driven oil pump. A power transmitting apparatus can comprise a torque converter, a clutch mechanism, an oil pump, a continuously variable transmission, a clutch control device, an engine control device, and a flow control device. The flow control device can be configured to limit or prevent the supply of oil to the torque converter by the oil pump and to prioritize the supply of oil to the clutch mechanism and the continuously variable transmission when the vehicle speed is reduced below a predetermined value with fuel being cut off by the engine control device during vehicle speed reduction. | 10-25-2012 |
20120302402 | AUTOMATIC TRANSMISSION AND HYDRAULIC CONTROL METHOD THEREFOR - A transmission controller operates an electrical oil pump in a steady mode, in which an operating load of the electrical oil pump is set at a steady load, during an idle stop, but operates the electrical oil pump in a high-pressure mode, in which the operating load of the electrical oil pump is higher than the steady load, for a predetermined period when an engine stops rotating. | 11-29-2012 |
20130085037 | CLUTCH WATER PUMP, CONTROL SYSTEM THEREOF, AND CONTROL METHOD THEREOF - A clutch water pump may include a pulley, a brake pad attached on an interior surface of the clutch compartment of the pulley, a clutch disk disposed corresponding to the brake pad in the clutch compartment, a hub rotatably mounted into the penetrating hole and coupled to the clutch disk through a plurality of spring pins, the plurality of spring pins connecting slidably the clutch disk to the hub, a magnetic actuator fixed to the hub and disposed to the clutch disk to selectively move the clutch disk toward or away from the brake pad, and a main shaft, one end of which is fixed to the center of the hub and the other end of which is fixed to an impeller. Furthermore, a method of controlling the clutch water pump according to the engine rotation speed, the coolant temperature, and a condition of the coolant temperature sensor is provided. | 04-04-2013 |
20130172149 | SHIP PROPULSION DEVICE - A ship propulsion device is configured so that a control device operates an engine at a first engine speed when a clutch is in a disengaged state; so that, based on the input of an input device, the control device changes the state of the clutch from the disengaged state to a partially engaged state and operates the engine at a second engine speed that is higher than the first engine speed; so that, based on the detection of a rotational speed detection device, the control device operates the engine at an engine speed that is lower than the second engine speed; and so that, based on the input of an input device, the control device changes the state of the clutch from the partially engaged state to an engaged state. | 07-04-2013 |
20140045654 | CONTROL OF CLUTCH FILL COMMAND BASED ON HYDRAULIC STATE OF ONCOMING CLUTCH - A system and method of controlling a clutch fill command based on the hydraulic state of an oncoming clutch is provided. A vehicle includes a hydraulically-actuated oncoming clutch that is configured to engage during a shift event from one operating mode of the vehicle to another. A controller is configured to generate a clutch fill command at an initial time such that completion of the clutch fill command is synchronized with an identified speed profile of the oncoming clutch. The oncoming clutch defines a real-time hydraulic state when the clutch fill command is generated. The controller is configured to generate a real-time acceptable speed margin for the oncoming clutch based at least partially on the real-time hydraulic state of the oncoming clutch. The controller is configured to cancel the clutch fill command if a real-time speed of the oncoming clutch is outside the generated real-time acceptable speed margin. | 02-13-2014 |
20140243151 | VEHICLE DRIVE APPARATUS - A vehicle drive device includes: an engine; a fluid power transmission device; a clutch disposed between an input side member and an output side member in the fluid power transmission device; and a torsional vibration reduction device disposed in a power transmission path between the engine and the fluid power transmission device in series with the fluid power transmission device, wherein when the clutch is put into slip engagement, the vehicle drive device has a minimum value set equal to or greater than zero for a differential rotation speed acquired by subtracting a rotation speed of the output side member from a rotation speed of the input side member and has a minimum value set less than zero for a differential rotation speed acquired by subtracting the rotation speed of the output side member from a rotation speed of an input side inertial body in the torsional vibration reduction device. | 08-28-2014 |
20140274561 | DAMPER DEVICE - A damper device is disposed between an engine and a transmission and has a torque distribution mechanism that is provided with a first input element connected to the engine, a second input element connected to the engine via an elastic member, a first output element connected to the transmission, and a second output element connected to the transmission. The damper device further has a first clutch that is disposed between the first output element and the transmission, and is switched between an engaged state of connecting the first output element to the transmission and a released state of disconnecting the first output element from the transmission, and a second clutch that is disposed between the second output element and the transmission, and is switched between an engaged state of connecting the second output element to the transmission and a released state of disconnecting the second output element from the transmission. | 09-18-2014 |
20140274562 | DAMPER DEVICE - A damper device is provided between an engine and a transmission and has a torque distribution mechanism that is provided with a first input element connected to the engine, a second input element connected to the engine via a first elastic member, a first output element connected to transmission, and a second output element connected to the transmission via a second elastic member. The damper device further has a first clutch that is provided between the first output element and the transmission and that is switched between an engaged state of connecting the first output element to the transmission and a released state of disconnecting the first output element from the transmission, and a second clutch that is provided between the second output element and the transmission and that is switched between an engaged state of connecting the second output element to the transmission and a released state of disconnecting the second output element from the transmission. | 09-18-2014 |
20150330477 | DAMPER DEVICE - A damper device is disposed between an engine and a transmission and has a torque distribution mechanism that is provided with a first input element connected to the engine, a second input element connected to the engine via an elastic member, a first output element connected to the transmission, and a second output element connected to the transmission. The damper device further has a first clutch that is disposed between the first output element and the transmission, and is switched between an engaged state of connecting the first output element to the transmission and a released state of disconnecting the first output element from the transmission, and a second clutch that is disposed between the second output element and the transmission, and is switched between an engaged state of connecting the second output element to the transmission and a released state of disconnecting the second output element from the transmission. | 11-19-2015 |
20160123256 | ENGINE-DRIVEN WORKING MACHINE - An engine-driven working machine is provided, in which a time period until the rotation speed limitation mode is canceled can be shortened. | 05-05-2016 |
20160169303 | POSITION OFFSET COMPENSATION METHOD OF CLUTCH FOR CONTROLLING POWER THAT IS TRANSMITTED FROM ENGINE TO WHEEL OF VEHICLE, AND CLUTCH POSITION CONTROL APPARATUS | 06-16-2016 |
477176000 | Slip rate control | 16 |
20080254942 | Clutch Controller, Method for Controlling Clutch, and Straddle-Type Vehicle - A clutch controller that transmits appropriate torque during engaging operation of a clutch and prevents excessive increase or decrease in engine speed. The clutch controller performs request follow-up control under which a clutch actuator is actuated based on a difference between actual transmission torque that is transmitted from a drive-side member to a driven-side member of a clutch, and request transmission torque that is determined based on a rider's accelerator operation, such that the actual transmission torque approximates the request transmission torque. If an engine operates in a predetermined operation condition, rotational speed maintaining control is performed under which the clutch actuator is actuated such that the actual transmission torque approximates the engine torque, in place of the request follow-up control. | 10-16-2008 |
20080300108 | TORQUE TRANSFER DEVICE AND SYSTEM - A device for a motor vehicle is provided. The device may comprise an input shaft for supplying torque, a clutch configured for selectively transferring the torque, a first gear configured for connection to the clutch, and a second gear connected to the first gear. The second gear may be fixed to the device so that the second gear is not free to rotate. The device may further comprise an output shaft for receiving the torque. The device may be configured to control the amount of torque transferred to the output shaft. | 12-04-2008 |
20090131223 | Method and device for detecting a clutch-bite point - Disclosed is a method for detecting a clutch bite-point of a clutch that is connected to a driving motor. A rotational speed of the driving motor and the wheel rotational speed values of the wheels driven by the driving motor are determined. The invention further relates to a device for implementing the method. As the exact clutch bite-point is required as a release criterion for an automatic release operation of an electric parking brake in a motor vehicle, a transmission ratio (f) is determined, which is produced from a quotient of the wheel rotational speed values (v | 05-21-2009 |
20090149298 | Aggressive Torque Converter Clutch Slip Control Design through Driveline Torsional Velocity Measurements - A system and method for setting the slip of a torque converter for a plurality of selected engine speeds and transmission gears. The method includes populating a table off-line, typically using a dynamometer, with torque converter slips for a plurality of selected engine speeds and transmission gears. A speed sensor is used to measure vibrations transmitted through the torque converter to the driveline of the vehicle. The sensor signal is sent to an analyzing system where it is converted to the frequency domain. A separate minimum slip value for each selected engine speed and transmission gear is stored in a table so that during vehicle operation, a controller will instruct the torque converter clutch to set the desired converter slip for the current engine speed and transmission gear provided for a particular throttle position and/or engine torque. | 06-11-2009 |
20090192018 | Method and Control Unit for Controlling a Drivetrain Which has a Dual-clutch Transmission - A method for controlling the drivetrain of a motor vehicle which has a dual-clutch transmission with a first partial transmission and a first clutch and with a second partial transmission and a second clutch. The drivetrain is operated with a gear being engaged in the first partial transmission and a gear engaged in the second partial transmission at the same time and with the first clutch and the second clutch being operated with slip at the same time. The first clutch and the second clutch are activated in a manner coordinated with one another in such a way that a rotational speed of the internal combustion engine assumes or maintains a predetermined value. A control unit is set up for carrying out the method. | 07-30-2009 |
20100144489 | DEVICE AND METHOD FOR TRANSMITTING ENGINE POWER - An engine power transmission device for improving the acceleration performance of an engine connected to a torque converter of construction machinery in accelerating from standstill, wherein a clutch ( | 06-10-2010 |
20100197459 | SPEED CHANGE CONTROLLER OF WORKING VEHICLE - Provided is a device for performing speed change not leading to engine stall in a working vehicle such as a wheel loader while sustaining a required tractive force and reducing fuel consumption. When a speed (“forward”, “second speed”) suitable for a work is selected by a speed change operator, control means makes a modulation clutch engaged in response to the vehicle speed drop and makes a lock-up state where a lock-up clutch is engaged transit to a lock-up and modulation clutch slip state where the lock-up clutch is engaged while the modulation clutch slips. Subsequently, the control means performs a clutch control for causing a transition to both clutch slip state where the lock-up clutch and the modulation clutch slip in response to the vehicle speed drop, thence causing the transition to a torque converter operation state where the modulation clutch is engaged and the lock-up clutch is released. | 08-05-2010 |
20120108391 | AUTOMATIC TRANSMISSION - An automatic transmission has a transmission control section performing a control so that a transmission ratio defined as input rpm/output rpm of the automatic transmission becomes a target transmission ratio, a slip control section slip-controlling a frictional engagement element in the automatic transmission so that the input rpm becomes a value obtained by multiplying the output rpm by the target transmission ratio also adding a predetermined slip revolution speed; and an abnormality judgment section judging abnormality in the automatic transmission. When the slip-control is not in progress, if an actual transmission ratio is out of a predetermined range of the target transmission ratio, the abnormality judgment section judges that abnormality occurs. When the slip-control is in progress, if a value obtained by correcting the actual transmission ratio on the basis of the slip revolution speed is out of the predetermined range, the abnormality judgment section judges that abnormality occurs. | 05-03-2012 |
20120149530 | CONTROLLING METHOD OF POWER DELIVERY SYSTEM OF VEHICLE - control method of a power delivery system of a vehicle, may include determining a theoretical target slip velocity of a torque converter for slipping a damper clutch, detecting a real slip velocity of the damper clutch in a real driving condition based on the theoretical target slip velocity, expressing distributions of the real slip velocity according to an engine load ratio into a control line diagram, and controlling the real target slip velocity of the damper clutch according to the control line diagram by using the engine load ratio. | 06-14-2012 |
20120252632 | METHOD FOR CONTROLLING AN AUTOMATED FRICTION CLUTCH - A method for controlling an automated friction clutch arranged in a drive train between an internal combustion engine and a gearbox, including: operating the friction clutch by a clutch actuator controlled by means of a controller; transmitting actual clutch torque by means of the friction clutch; implementing actual clutch torque that can be transmitted by means of the friction clutch and that can be adapted to the transmission behavior of the friction clutch by means of a control variable of the clutch actuator associated with a target torque of the clutch torque to be transmitted; operating the friction clutch in an engaged state while the target torque is specified; and adapting the target torque depending on clutch torque estimated from the operating data of the engine. The target torque corresponds to an engine torque that is generated by the internal combustion engine and that is applied with a safety margin. | 10-04-2012 |
20140018209 | CONTROL APPARATUS FOR VEHICULAR POWER TRANSMITTING APPARATUS - A map is provided that has an unlimited region where a take-off slip-engagement the next time is repeatedly executed indefinitely, a limited region where the take-off slip-engagement the next time is repeatedly executed only once, and a prohibited region where the take-off slip-engagement the next time is prohibited, and has a generated heat amount during the take-off slip-engagement and an elapsed time after the lock-up slip-engagement ends as variables. Therefore, a region in which the take-off slip-engagement the next time had been prohibited because the take-off slip-engagement the next time is unable to be repeatedly executed indefinitely even though it is able to be repeatedly executed only once is made the limited region, so the take-off slip-engagement the next time is allowed to be repeatedly executed only once. | 01-16-2014 |
20140162846 | CONTROL METHOD FOR VEHICLE WITH DCT - A clutch in a vehicle with DCT having an ISG function is controlled for an engine speed to be decreased rapidly when the engine enters into the ISG so that a ring gear of an engine and a gear of a starter motor are meshed more rapidly when a vehicle restarts, to thereby prevent a response delay when restarting the vehicle. | 06-12-2014 |
20140221157 | MOTOR VEHICLE DRIVE TRAIN ARRANGEMENT - In a motor vehicle drive train arrangement with at least one main drive train for driving a main drive axle, and at least one auxiliary drive train which is driven via the main drive train and connected to a secondary drive axle which can be driven via the auxiliary drive train, the secondary drive axle is linked to the auxiliary drive train without an axle differential and the secondary drive axle includes controllable couplers for selectively coupling the secondary drive axle wheels to the auxiliary drive train. | 08-07-2014 |
20160123411 | METHOD OF ADJUSTING CLUTCH CHARACTERISTICS OF DCT VEHICLE - A method of adjusting clutch characteristics of a Double Clutch Transmission (DCT) vehicle may include determining whether gear shifting has been initiated, updating a T-S curve of a release-side clutch by a transmission torque that is determined using an equation of motion of an engine and a clutch, when a condition in which a difference between an engine speed and a speed of a release-side input shaft is satisfied to be above a first predetermined reference value during a first reference period of time when the gear shifting is determined to have been initiated, and when a torque handover has not been initiated, updating the T-S curve of a connection-side clutch by the transmission torque that has been determined using the equation of motion during a period of time from completion of torque handover to completion of the shifting of gears. | 05-05-2016 |
20160123465 | SHIFTING CONTROL METHOD FOR VEHICLE WITH DCT - A shifting control method for a vehicle with a Double Clutch Transmission (DCT), may include determining whether a manual range power-on up shift has been started, determining whether an actual shifting period has been started, when the manual range power-on up shift has been started, and applying additional predetermined compensation torque to basic torque applied to an engagement-side clutch, when the actual shifting period has been started. | 05-05-2016 |
20160167655 | CLUTCH CONTROL SYSTEM FOR VEHICLE | 06-16-2016 |
477177000 | Overload release | 1 |
20090264254 | Process for controlling a twin clutch - The invention relates to a process for controlling a twin clutch transmission with two partial drive trains with respectively a friction clutch interposed between an internal combustion engine and the partial drive train. If the transmission capacity of a friction clutch falls below the engine torque, engine intervention takes place. If the clutch temperature rises further above a default value, an emergency operation is initiated, in which the affected partial drive train is deactivated by opening the affected friction clutch, a preselection strategy used in the other partial drive train is changed and the other partial drive train is activated. | 10-22-2009 |