Class / Patent application number | Description | Number of patent applications / Date published |
477039000 | With clutch control | 20 |
20080227593 | Method and control device for adjusting a rotational speed of a shaft of a gear change transmission - In a method and control device for adjusting a rotational speed of a shaft of a gear change transmission of a motor vehicle, a torque required for the acceleration of the transmission and derived from a drive motor is transmitted by means of an automated clutch and using the torque the rotational speed of the shaft is precisely and rapidly adjusted to a range around a target rotational speed by defining a desired value for a position of the clutch on a rotational speed difference between a measured rotational speed of the shaft and a target rotational speed so that the gear can then rapidly be changed. | 09-18-2008 |
20080242499 | Straddle-Type Vehicle, Power Unit and Continuously Variable Transmission - A straddle-type vehicle in which drivability is ensured when starting the vehicle. The vehicle includes a control device that controls a continuously variable transmission. A plurality of driving modes “A” and “B” are set in the control device. The control device performs a first control that switches the driving mode to driving mode “A” before start of the engine; a second control that switches between driving 2modes A” and “B” in response to operation of a mode switching operation member; and a third control that limits the second control and inhibits switching from the driving mode “A” to driving mode “B”, when the control device detects that the engine has not been started. | 10-02-2008 |
20080248919 | Continuously Variable Transmission - A continuously variable transmission for a motorcycle that provides appropriate engagement of a centrifugal clutch when a clutch shoe is worn. A control unit controls a change gear ratio to a TOP side to engage the centrifugal clutch when the centrifugal clutch is disengaged and an engine rotational speed is higher than a predetermined first rotational speed. | 10-09-2008 |
20080312030 | TRANSMISSION DEVICE AND CONTROL METHOD FOR CONTINUOUSLY VARIABLE TRANSMISSION - In the case where a belt return of a continuously variable transmission is not determined when the vehicle speed has become equal to or lower than a threshold value, control that causes a hydraulic actuator to have an intermediate pressure by setting a duty of a duty solenoid based on an input torque and an oil temperature and closing control are repeatedly performed, in accordance with the running and the stopping of the vehicle. As a result, it is possible to inhibit the continuously variable transmission from being shifted up due to a gradual increase in the hydraulic pressure in the hydraulic actuator caused by a line pressure seeping to the hydraulic actuator side through a small clearance in a spool of a flow rate control valve in a hydraulic circuit, and it is also possible to allow the continuously variable transmission to be shifted down. | 12-18-2008 |
20090029826 | Controller of work vehicle - Various works of a tractor or wheel loader that require frequent operations of start, stop, and switching between the forward drive and reverse drive that are repeated alternately can be performed very easily. The control apparatus comprises a speed change sensor that detects the step-on amount of a speed change pedal, an actuator that regulates the swash plate angle of a hydraulic pump based on the detection value of the speed change sensor, a transmission output unit rotation sensor that detects the revolution speed of an output shaft, and a control unit. The control unit performs control such that when the speed change pedal is not stepped on, a brake is applied to the travel wheels and both the forward drive clutch and the reverse drive clutch are disengaged, and also performs control such that when the transmission drive output detected with the transmission output unit rotation sensor is not more than that the forward-reverse drive switching speed, either the forward drive clutch or the reverse drive clutch is engaged as the speed change pedal is stepped on. When the engagement of the forward drive clutch or reverse drive clutch is confirmed, the brake of the travel wheels is released. | 01-29-2009 |
20090124455 | METHOD FOR CONTROLLING A BELT-TYPE CONTINUOUSLY VARIABLE TRANSMISSION AND A FRICTION CLUTCH IN A VEHICULAR DRIVE LINE - The invention provides for a vehicle drive line provided with an engine ( | 05-14-2009 |
20090291802 | PRESSURE MEDIUM-ACTUATED CONTROL DEVICE OF AN AUTOMATED STEP-BY-STEP VARIABLE SPEED TRANSMISSION - A pressure medium-actuated control device of an automated step-by-step variable speed transmission. The device having a control valve for controlling an actively engaged disconnectable type clutch which is disposed along a power flow path between a motor and a transmission input shaft, and a self-retaining valve located in the pressure supply of the clutch control valve for a rotational speed-dependent emergency actuation of the disconnectable type clutch. An electrical switch-off actuator is connected to the self-retaining valve such that the valve piston, of the self-retaining valve, can be moved into an idle position to lock the pressure supply of the clutch control valve in a powered state of the switch-off actuator, and into an operating position determined by the applied control pressures in the power-off state of the switch-off actuator. | 11-26-2009 |
20100144487 | MOTOR-GENERATOR SYSTEM DRIVEN BY V-BELT - A motor-generator system for a vehicle, in which power transmission between a crankshaft of an engine and a motor-generator is performed by a V-belt wound around pulleys thereof, includes a speed controller controlling the rotational speed of the V-belt within a predetermined range and provided on a crankshaft pulley mounted on the crankshaft. The motor-generator system, among others, can maintain the power transmission force of the V-belt at a high level. | 06-10-2010 |
20100216595 | System and Method for Controlling the Torque Transferable by a Mechanical Drive Employing an Oil-Bath Clutch - A system and method for controlling the torque transferable by a mechanical drive between an engine and a shaft of a vehicle includes a first actuator which acts on a variable-speed drive, a second actuator which acts on a clutch to determine the degree of engagement/release of the clutch; and a measuring device for measuring the torque to or from the variable-speed drive. The first and second actuators and the measuring device are controlled by an electronic central control unit to protect the variable-speed drive and/or the clutch from mechanical overloading of the mechanical drive. | 08-26-2010 |
20110071000 | Controlling Torque in a Flywheel Powertrain - A method for controlling a powertrain for an automotive vehicle includes determining a desired flywheel torque, determining, with reference to the desired flywheel torque, a desired torque capacity torque of a clutch through which torque is transmitted between the flywheel and wheels of the vehicle, operating the clutch to produce the desired clutch torque capacity, determining a slip error across the clutch, and changing a gear ratio of a continuously variable transmission located in a drive path between the clutch and said wheels to a gear ratio that reduces the slip error. | 03-24-2011 |
20110312469 | DRIVE FORCE CONTROL SYSTEM - A drive force control system includes a shifting demand judging means that judges whether or not a torque capacity of the clutch is relatively high, and a condition for changing the speed change ratio of the continuously variable transmission stepwise is satisfied; and a first shifting means, that reduces the torque capacity of the clutch before changing the speed change ratio of the continuously variable transmission, to synchronize a rotational speed of the internal combustion engine with an input speed of the continuously variable transmission to be attained after changing the speed change ratio thereof while changing the speed change ratio of the continuously variable transmission, and to increase the torque capacity of the clutch after changing the speed change ratio of the continuously variable transmission, when changing the speed change ratio of the continuously variable transmission stepwise. | 12-22-2011 |
20120083388 | COAST STOP VEHICLE AND CONTROL METHOD THEREOF - A coast stop vehicle which stops an engine during the travel of the vehicle is provided with a variator including a pair of pulleys and a belt mounted between the pulleys and capable of continuously changing a speed ratio. A controller judges whether or not coast stop conditions to stop the engine during the travel of the vehicle hold, stops the engine when the coast stop conditions hold, and prevents the speed ratio from being upshifted to a higher side than a speed ratio at the time of starting the coast stop control during the coast stop control. | 04-05-2012 |
20120088629 | COAST STOP VEHICLE AND COAST STOP METHOD - A coast stop vehicle includes a variator which continuously changes a speed ratio by changing a winding diameter of a belt mounted on pulleys, a sub-transmission mechanism connected in series with the variator and shifting discrete gear positions by changing engaged states of a plurality of frictional engagement elements, and a coast stop unit which stops the rotation of the drive power source and releases the engaged frictional engagement element when the coast stop condition holds during travel. The coast stop unit includes a coast stop prohibiting unit which prohibits the coast stop regardless of the coast stop condition when it is predicted at the time of determining whether or not the coast stop condition holds that a belt tightening force of the pulley falls below an engaging force of the frictional engagement element in the engaged state by the execution of the coast stop. | 04-12-2012 |
20120244993 | CONTROL APPARATUS FOR VEHICLE EQUIPPED WITH CONTINUOUSLY VARIABLE TRANSMISSION - A control apparatus for a vehicle equipped with continuously-variable transmission includes a drive source; a continuously-variable transmitting mechanism including a primary pulley, a secondary pulley and a power transferring member; a friction engagement element provided between the drive source and the continuously-variable transmitting mechanism; and a vehicle-stop LOW shift control section including a vehicle-stop judging section configured to judge if the vehicle is in a stopped state. A power-transferring state of the friction engagement element is controlled by an engaging-force control. The vehicle-stop LOW shift control section starts a vehicle-stop LOW shift control to shift a pulley ratio of the continuously-variable transmitting mechanism toward LOW side when the vehicle-stop judging section determines that the vehicle is stopped under a power-transferring state where the friction engagement element is in an engaged state and the pulley ratio is not in a LOWEST region. | 09-27-2012 |
20120264566 | VEHICLE AND METHOD FOR CONTROLLING THE SAME - A vehicle and a method for controlling the vehicle are capable of preventing slip of a belt of a continuously variable transmission at an appropriate timing. A control unit included in the vehicle includes a state information obtaining unit that obtains information indicating a state of a torque damping mechanism provided on a torque transmission path between a second pulley of a continuously variable transmission and a drive wheel, and a clamping force changing processing unit that changes the clamping forces of the first pulley of the continuously variable transmission and the second pulley, based on the state of the torque damping mechanism. | 10-18-2012 |
20130035204 | MOTOR-GENERATOR SYSTEM DRIVEN BY V-BELT - A motor-generator system for a vehicle, in which power transmission between a crankshaft of an engine and a motor-generator is performed by a V-belt wound around pulleys thereof, includes a speed controller controlling the rotational speed of the V-belt within a predetermined range and provided on a crankshaft pulley mounted on the crankshaft. The motor-generator system, among others, can maintain the power transmission force of the V-belt at a high level. | 02-07-2013 |
20130045834 | POWER TRANSMITTING APPARATUSES - A power transmitting apparatus for a vehicle mounted with a torque converter can be configured to instantly supply sufficient oil to a clutch mechanism on restart of the engine after an idle-stop without an electrically-driven oil pump. A power transmitting apparatus can comprise a torque converter having a torque amplifying function, a clutch mechanism, an oil pump, a clutch control device, an engine control device, and a flow control device. The oil pump can be driven by the driving power of the engine to supply oil to the clutch mechanism and the torque converter to operate them. The flow control device can be configured to limit or prevent the supply of oil to the torque converter by the oil pump and to prioritize the supply of oil to the clutch mechanism when the engine is restarted by the engine control device after the idle-stopped condition. | 02-21-2013 |
20130345020 | TORQUE CONTROL DEVICE OF DRIVING SOURCE - In a driving device of a vehicle provided with driving sources, an input shaft rotatable due to driving force of the driving sources, a continuously variable transmission mechanism that shifts the rotation of the input shaft to be transmitted to an output shaft, and a start clutch for switching presence/absence of driving force transmission from the output shaft to a downstream side; when a ratio of the continuously variable transmission is on a lower ratio side than a predetermined threshold value, the output torque control means for controlling the output torque of the driving sources perform control to restrict the upper limit of output torque of the driving sources to a value smaller than the upper limit when a ratio is on the higher ratio side than the threshold value. | 12-26-2013 |
20140357447 | CONTINUOUSLY VARIABLE POWER-SPLIT VEHICLE TRANSMISSION - A vehicle transmission ( | 12-04-2014 |
20140357448 | CONTROL DEVICE FOR VEHICULAR CONTINUOUSLY VARIABLE TRANSMISSION - A control device of a continuously variable transmission for a vehicle to which power of a drive force source is input through a transmission path connecting/disconnecting device changes a gear ratio of the continuously variable transmission to a lower vehicle speed side during vehicle deceleration when the transmission path connecting/disconnecting device is in a power transmission interrupted state of interrupting power transmission through a power transmission path between the drive force source and the continuously variable transmission, earlier as compared to when the transmission path connecting/disconnecting device is in a power transmittable state enabling the power transmission, and the control device changes a gear ratio of the continuously variable transmission earlier to the lower vehicle speed side when vehicle deceleration is larger, when the transmission path connecting/disconnecting device is in the power transmission interrupted state. | 12-04-2014 |