Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Control means selectively operates engine energy input and brake

Subclass of:

477 - Interrelated power delivery controls, including engine control

477007000 - ELECTRIC ENGINE

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
477027000 Control means selectively operates engine energy input and brake 10
20100190603Vehicle Propulsion Device - When a drive wheel (07-29-2010
20120071296APPARATUS FOR CONTROLLING MOTOR TORQUE - In a vehicle that generates creep torque using an electric motor, a controlling means that causes, on the basis of the results of the detecting by the vehicle speed detecting means and the braking operation detecting means, the electric motor to generate the creep torque, wherein if the brake is operated when the creep torque is generated, the controlling means decreases the creep torque by a first level, if the brake is not operated when the creep torque is generated, the controlling means increases or decrease the creep torque in a level range on the basis of the speed of the vehicle detected by the vehicle speed detecting means, and the first level is a decreasing level larger than a possible maximum decreasing level in the level range.03-22-2012
20130296130METHODS AND SYSTEMS FOR TRANSITIONING BETWEEN BRAKING MODES - Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a method for transitioning between driveline braking and wheel brakes is provided.11-07-2013
20160052521APPARATUS AND METHOD FOR CONTROLLING DISTRIBUTION OF BRAKING FORCE OF VEHICLE - A method and an apparatus are provided for distributing a braking force to braking units upon braking of an eco-friendly vehicle equipped with a motor. The distribution of a braking force of a vehicle includes a creep torque to calculate a total braking force and distribute the total braking force to each braking unit to provide a more uniform braking force based on a vehicle speed.02-25-2016
477028000 Fluid actuated brake 3
20080207391Vehicle motion control apparatus - A vehicle motion control apparatus includes hydraulic pressure applying means for applying hydraulic pressure to a wheel cylinder side of any of plural solenoid valves, respectively arranged between a master cylinder and plural wheel cylinders, for the corresponding wheel cylinders even when an operator of the vehicle does not operate a brake operation member, motor controlling means for controlling an output of the electric motor to be reduced in accordance with a condition of a road surface when the hydraulic pressure is applied to the wheel cylinder, and valve controlling means for controlling the operation of the solenoid valve to increase an amount of the brake fluid flown by the operation of the solenoid valve before the output of the electric motor is reduced when the output of the electric motor is controlled to be reduced.08-28-2008
20090069149BRAKE FORCE CONTROL DEVICE AND METHOD - A braking force control device includes: a brake control device that controls a mechanical brake braking torque by operating electric actuators so as to achieve a requested brake braking torque; a motor control device that controls a motor torque by operating motors so as to achieve the requested motor torque; a requested braking torque calculation device that calculates the requested braking torques of wheels; a battery requested electric power calculation device that finds a battery requested electric power based on target amounts of electricity charged in batteries; and an individual braking torque calculation device that finds the requested motor torque and the requested brake braking torque that cause the requested braking torque to be generated based on the battery requested electric power and the requested braking torque.03-12-2009
20100113214Method and Apparatus For Optimizing Braking Control During A Threshold Braking Event - A method minimizes a driveline vibration and reduces stopping distances in a hybrid electric vehicle (HEV) having a plurality of drive wheels, a friction braking system having antilock braking system (ABS) capability, and an electronically variable transmission (EVT) with two EVT modes. The method automatically shifts the EVT to a predetermined high speed/low torque EVT mode when the ABS is active and when a calibrated maximum deceleration rate is not exceeded. An HEV has a friction braking system with ABS capability and an EVT including a plurality of modes. A controller automatically activates the friction braking ABS in response to a threshold level of slip between the drive wheels and the road surface when the brake pedal is actuated. An algorithm automatically shifts the EVT into one of the high speed/low torque EVT modes when the ABS is activated and the calibrated maximum deceleration rate is not exceeded.05-06-2010
477029000 Electrically actuated brake 3
20100062897Brake Control System - Provided is a brake control apparatus for a vehicle which detects an amount of brake-pedal operation by means of an electric signal, and then calculates a braking force demanded by a driver from the electric signal, and thereby generates the demanded braking force. A control mode for a braking force is switched from a normal control mode to a stationary-vehicle control mode, if a determination that the vehicle is in a stationary state is followed by another determination that an electric signal corresponding to an actual braking force exceeds a command value for a stationary-vehicle braking force while the vehicle is in the stationary state. The control mode for a braking force is switched from the stationary-vehicle control mode to the normal control mode, if it is determined that the demanded braking force becomes smaller than the command value for the stationary-vehicle braking force. In addition, in the stationary-vehicle control mode, a braking force generated by a means for braking is equal to the command value for the stationary-vehicle braking force, whereas, in the normal control mode, the braking force generated by the means for braking is equal to the braking force demanded by the driver.03-11-2010
20100081542Transmission mechanism capable of simultaneously measuring and controlling the transmission travel - A transmission mechanism capable of simultaneously measuring and controlling the transmission travel includes: a) a transmission unit having a reduction gearset and a transmission gear both of which are disposed within a housing; b) a motor installed at the external side of the housing for supplying power to the transmission unit; c) a transmission rod passing through the housing so as to engage with the transmission gear; d) a fixing sleeve disposed at the external side of the housing und mounted at one end of the transmission rod; and e) a sensing element opposing to the transmission gear and disposed within the housing for measuring the number of the rotation of the transmission gear. The sensing element is a magnetic reed pipe, and at least a magnet is disposed at the transmission gear. In this way, a transmission mechanism capable of simultaneously measuring and controlling the transmission travel ensures an accurate control of the transmission travel.04-01-2010
20100113215METHOD FOR OPERATING A VEHICLE BRAKE SYSTEM AND VEHICLE BRAKE SYSTEM - A method for operating a vehicle brake system and a corresponding vehicle brake system, particularly for motor vehicles. The vehicle wheels of the motor vehicle associated with an axle are at least partially driven by ‘WV’ an electric motor that can be operated as a generator during regeneration of braking energy, thus exerting a braking regeneration el torque on the respective axle. To prevent overbraking on the rear axle, the regeneration torque acting on at least one rear axle (HA) is limited such that the slippage present on the at least one vehicle wheel of the rear axle (HA) does not exceed or only negligibly exceeds a first slippage threshold individually associated with the respective vehicle wheel.05-06-2010
Website © 2025 Advameg, Inc.