Class / Patent application number | Description | Number of patent applications / Date published |
455127300 | Plural amplifier stages | 27 |
20090068967 | COMMUNICATION SEMICONDUCTOR INTEGRATED CIRCUIT, COMMUNICATION ELECTRONIC COMPONENT AND WIRELESS COMMUNICATION SYSTEM - A communication semiconductor integrated circuit includes a phase control loop and an amplitude control loop. A gain of a variable gain amplifier when it is detected from an output of the comparator that the amplitudes of the reference signal and the feedback signal are equal to each other while a predetermined DC voltage is applied to an amplifier which amplifies an output of a transmission oscillation circuit and is controlled by the amplitude control loop to vary the gain of the variable gain amplifier on a feedback path is held in a register. Thereafter, the DC voltage is changed to another value to detect the gain of the variable gain amplifier, so that the gain of a variable gain amplifier on the forward path is decided on the basis of the detected gain and the gain held in the register. | 03-12-2009 |
20090111401 | TRANSMITTER ARRANGEMENT - A transmitter arrangement includes a first amplifier arrangement and a second amplifier arrangement. The first amplifier arrangement includes a first amplification path and a second amplification path. The first amplification path is adapted to amplify signals comprising a data content according to a first communication standard. The second amplification path is adapted to amplify signals comprising a data content according to a second communication standard. The second amplifier arrangement further includes a first and second amplification path sharing at least one common amplifier stage that is adapted to amplify signals having a data content according at least to the second communication standard. | 04-30-2009 |
20090209214 | AMPLIFYING A TRANSMIT SIGNAL USING A FRACTIONAL POWER AMPLIFIER - A transmit amplifier stage operable to amplify a transmit signal comprises power amplifiers and switches. The power amplifiers include at least one fractional power amplifier operable to provide fractional power to amplify the transmit signal, where the fractional power is a fraction of the full power. A switch has a plurality of positions, where a position directs the transmit signal to a selected power amplifier. | 08-20-2009 |
20090209215 | PROBABILITY OPTIMIZED POWER AMPLIFIER MODULE AND TRANSMITTER - A power amplifier module includes a first power amplifier, a second power amplifier, and a controlling module. The first power amplifier has an amplification set for optimal efficiency in accordance with most probable transmit power level settings within a transmit power level range. The second power amplifier has an amplification set for optimal efficiency in accordance with the most probable transmit power level settings within the transmit power level range. The controlling module is coupled to: enable one of the first and second power amplifiers to amplify an outbound radio frequency (RF) signal in accordance with a power setting when the power setting is not within the most probable transmit power level settings; and enable at least one of the first and second power amplifiers to amplify the outbound RF signal in accordance with the power setting when the power setting is within the most probable transmit power level settings. | 08-20-2009 |
20090311980 | Double-LINC Switched-Mode Transmitter - Disclosed herein are methods and apparatus for processing an input information signal having varying amplitude and phase to obtain an amplified output signal having the same amplitude and phase variation. In an exemplary method, an input information signal is decomposed into two pairs of constant-envelope component signals such that the vector sum of the first pair is orthogonal to the vector sum of the second pair, for desired signal amplitudes below a level corresponding to a pre-determined threshold. For desired signal amplitudes above this level, the input information signal is instead decomposed into two pairs of constant-envelope component signals such that the vector sum of the first pair is separated by less than ninety degrees from the vector sum of the second pair. The constant-envelope component signals may be amplified by highly-efficient non-linear amplifier elements and combined to obtain the amplified output signal. | 12-17-2009 |
20100069025 | HIGH-EFFICIENCY TRANSMITTER WITH LOAD IMPEDANCE CONTROL - A transmitter generates first and second constant-envelope radio frequency (RF) component signals having first and second phase angles. The first and second phases are controlled by a phase controller. First and second nonlinear power amplifiers (PAs) are modulated by an amplitude-modulated power supply signal as the first and second constant-envelope RF component signals are amplified. The phase controller controls the first and second phases of the first and second constant-envelope RF component signals, in response to a power control signal, and, in so doing, controls an effective load impedance seen at the outputs of the first and second nonlinear PAs. By controlling the effective load impedance in response to a power control signal, rather than in response to rapid amplitude variations in an input signal envelope, the output power of the transmitter is efficiently controlled over a wide dynamic range even at low output powers. | 03-18-2010 |
20100069026 | Transmitter with Hybrid Closed Loop Power Control - Systems and method for implementing a transmitter with hybrid closed loop power control in a communication device. | 03-18-2010 |
20100069027 | TRANSMIT POWER MANAGEMENT FOR A COMMUNICATION DEVICE AND METHOD FOR USE THEREWITH - An RF integrated circuit (IC) includes a processing module that determines a selected one of the plurality of power modes based on current use characteristics of at least one application, and generates a power mode signal based on the selected one of the plurality of power modes. An on-chip power management circuit receives the power mode signal and generates a plurality of power supply signals based on the power mode signal. | 03-18-2010 |
20100093292 | Tx MODULE FOR WIRELESS COMMUNICATION - A Tx module for wireless communications includes a plurality of Tx signal input ports receiving Tx signals of different frequencies, respectively, a plurality of power amplification units having input ports connected to the plurality of Tx signal input ports, respectively, a plurality of matching circuit units configured as transformers having input ports connected to output ports of the plurality of power amplification units, respectively, a plurality of harmonic filter units having input ports connected to output ports of the plurality of matching circuit units, respectively, a switch unit having input ports connected to output ports of the plurality of harmonic filter units, respectively and selecting one of signals input through the input ports as output, a gain/switching control unit controlling gains of the power amplification units and controlling the output selection of the switch unit, and a Tx signal output port connected to an output port of the switch unit. | 04-15-2010 |
20100151805 | RADIO FREQUENCY CIRCUIT - In a multi-stage amplifier, a power supply circuit and a multiplier perform control so that, when there are manufacturing variations in, for example, inter-stage capacitance, a collector voltage of a stage immediately preceding a final stage is smaller than a collector voltage of the final stage, thereby suppressing variations in AM-PM characteristics. | 06-17-2010 |
20110124306 | CURRENT CANCELING VARIABLE GAIN AMPLIFIER AND TRANSMITTER USING SAME - A current canceling CMOS variable gain amplifier includes a first leg and a second leg. The first leg has a first input line, a first output line, a first ON transistor, a first control transistor and a first subtracting transistor. The second leg has a second input line, a second output line, a second ON transistor, a second control transistor and a second subtracting transistor. The second input line can provide a second input current. The second output line can provide a second output current. The first input line is arranged to provide a first input current to each of the first ON transistor, the first control transistor and the first subtracting transistor. The second input line is arranged to provide a second input current to each of the second ON transistor, the second control transistor and the second subtracting transistor. The first output line is in electrical connection with each of the first ON transistor, the first control transistor and the second subtracting transistor. The second output line is in electrical connection with each of the second ON transistor, the second control transistor and the first subtracting transistor. | 05-26-2011 |
20130122837 | BROADBAND HIGH EFFICIENCY AMPLIFIER SYSTEM INCORPORATING DYNAMIC MODULATION OF LOAD IMPEDANCE - Systems and methods are provided for producing an amplified radio frequency (RF) signal representing a baseband input signal. A first amplifier amplifies a first intermediate signal to provide a first amplified signal. Second and third amplifiers amplify a second intermediate signal to provide second and third amplified signals. A signal combiner combines the first, second, and third amplified signals to produce the amplified RF signal. An RF modulator modulates an RF carrier signal with a baseband input signal to provide the first and second intermediate signals. The RF modulator provides the first and second intermediate signals such that the first amplified signal is out-of-phase with each of the second and third amplified signals at an output of an active device within the second amplifier when the amplitude of the baseband input signal exceeds a threshold voltage and in phase when the baseband input signal is below a threshold voltage. | 05-16-2013 |
20130171949 | APPARATUS AND METHOD FOR GAIN OF DRIVER AMPLIFIER EXPONENTIAL VARIABLE IN WIRELESS TRANSMITTER - An apparatus and a method for exponentially controlling a gain of a driver amplifier to drive a power amplifier are provided. The driver amplifier includes a plurality of cascode amplifier segments, wherein when a plurality of candidate gain values of the driver amplifier is arranged, the candidate gain values form a geometric sequence. A unit cost can be reduced by halving an area occupied by the driver amplifier. | 07-04-2013 |
20130260704 | RADIO FREQUENCY POWER AMPLIFIER WITH LOW DYNAMIC ERROR VECTOR MAGNITUDE - Embodiments provide a multi-stage radio frequency (RF) power amplifier (PA) having a low dynamic error vector magnitude (EVM). A first stage of the RF PA may include a first active device configured to receive an enable signal and to turn on in response to the enable signal, thereby activating the first stage. The RF PA may further include a second active device coupled in series with the first active device and configured to receive a main supply voltage. The second active device may provide a first supply voltage across the first active device that is less than and independent of the main supply voltage. One of the first active device or the second active device may be configured to receive an RF input signal and to pass an amplified RF output signal to a second stage of the RF PA circuit. | 10-03-2013 |
20140120854 | Transmitter Architecture and Related Methods - A radio frequency (RF) transmitter includes one or more power amplifiers and a controller that is configured to adjust amplitudes and phases of RF input signals of the one or more power amplifiers and supply voltages applied to the one or more power amplifiers. In embodiments where multiple power amplifiers are used, a combiner may be provided to combine outputs of the power amplifiers. In at least one implementation, amplitude adjustment of the RF input signals of the one or more power amplifiers may be used to provide transmit power control and/or power backoff for the RF transmitter. | 05-01-2014 |
20140162579 | FRONT END MODULE - There is provided a front end module, including an amplification circuit unit amplifying signal, a multistage matching circuit unit connected to an output terminal of the amplification circuit unit, and a switch circuit unit connected to the multistage matching circuit unit, wherein the switch circuit unit includes a series switch circuit and a parallel switch circuit, the parallel switch circuit being connected to a node between a plurality of matching circuits included in the multistage matching circuit unit. | 06-12-2014 |
20140220914 | POWER AMPLIFIER ADJUSTMENT FOR TRANSMIT BEAMFORMING IN MULTI-ANTENNA WIRELESS SYSTEMS - One or more beamsteering matrices are applied to one or more signals to be transmitted via multiple antennas. After the one or more beamsteering matrices are applied to the one or more signals, the plurality of signals is provided to a plurality of power amplifiers coupled to the multiple antennas. Signal energies are determined for the plurality of signals provided to the plurality of power amplifiers, and relative signal energies are determined based on the determined signal energies. Output power levels of the plurality of power amplifiers are adjusted based on the determined relative signal energies. | 08-07-2014 |
20140220915 | WIDEBAND TRANSMITTER FRONT-END - One embodiment of the present invention provides a transmitter for wireless communication. The transmitter includes a wideband tunable modulator, a number of power amplifiers with a particular power amplifier associated with a particular frequency range, and a wideband power amplifier (PA) driver. The PA driver is configured to receive an output signal from the wideband tunable modulator, amplify the output signal, and send the amplified output signal to at least one of the power amplifiers. | 08-07-2014 |
20140235187 | Front-End System for a Radio Transmitter - Front-end systems for a transmitter included in a radio device are disclosed. An example front-end system may comprise a voltage-to-power mixer. The voltage-to-power mixer may be configured to up-convert a baseband signal to a high-frequency signal by multiplying the baseband signal with a local oscillator signal. Additionally, the voltage-to-power mixer may include a voltage feedback circuit. The example front-end system may further comprise a two-stage power amplifier. The two-stage power amplifier may be configured to amplify the high-frequency signal. | 08-21-2014 |
20140273897 | Power Supply - A power supply for a radio frequency (RF) power amplifier that amplifies an RF input signal into an RF output signal and a method of operation in the power supply. The power supply comprises a first power converter to convert an input voltage to the power supply into a first supply voltage of the RF power amplifier. The power supply comprises a second power converter to receive the input voltage and the first supply voltage and to selectively convert either the input voltage or the first supply voltage into at least a portion of a second supply voltage of the RF power amplifier. | 09-18-2014 |
20140335805 | RF Amplifier Architecture and Related Techniques - A radio frequency (RF) power amplifier system or transmitter includes one or more power amplifiers and a controller that is configured to adjust amplitudes and phases of RF input signals of the one or more power amplifiers and supply voltages applied to the one or more power amplifiers. In embodiments where multiple power amplifiers are used, a combiner may be provided to combine outputs of the power amplifiers. | 11-13-2014 |
20140357208 | RADIO FREQUENCY TRANSMITTER, POWER COMBINERS AND WIRELESS COMMUNICATION UNIT THEREFOR - A radio frequency transmitter includes: power amplifier stages having paired output terminals, where a pair of output terminals is coupled to a respective amplifier stage. A power combining arrangement includes: first paired input terminals, second input terminals, such that each input of the first paired input terminals is coupled to the same second input terminal; and a power transfer circuit coupling the second input terminals. A first pair of cross coupled bond wires couples a pair of amplifier stage output terminals with a different second input terminal via terminals of different pairs of the first paired input terminals; and a second pair of cross coupled bond wires overlays the first pair of cross coupled bond wires and couples a further pair of amplifier stage output terminals with a different second input terminal via terminals of different pairs of the first paired input terminals. | 12-04-2014 |
20150050901 | MULTI-MODE MULTI-BAND POWER AMPLIFIERS - Exemplary embodiments are directed to an amplifier module which may comprise a transmit path including a first amplifier and a second amplifier. The exemplary amplifier module may further include a transformer coupled between the first amplifier and the second amplifier and switchably configured for coupling the first amplifier in series with the second amplifier in a first mode and coupling the first amplifier to bypass the second amplifier in a second mode. | 02-19-2015 |
20160020743 | LOW POWER, LOW OUT-OF-BAND HARMONIC CONTENT RADIO - A radio that includes a transceiver to transmit and receive RF signals. The transceiver including a transmitter, a transformer, and a receiver, the transformer is coupled to and shared between the transmitter and the receiver. A resonator is formed by the combination of the transformer and capacitive elements of the transmitter and receiver. | 01-21-2016 |
20160079946 | MULTI-BAND LOW NOISE AMPLIFIER WITH A SHARED DEGENERATION INDUCTOR - An apparatus includes a first transistor configured to amplify first signal components within a first frequency band of a radio frequency signal, a second transistor configured to amplify second signal components within a second frequency band of the radio frequency signal, and a third transistor configured to amplify third signal components within a third frequency band of the radio frequency signal. The apparatus also includes a degeneration inductor having a first tapping point, a second tapping point, and a third tapping point. The first tapping point is coupled to the first transistor, the second tapping point is coupled to the second transistor, and the third tapping point is coupled to the third transistor. | 03-17-2016 |
20160099687 | ENVELOPE TRACKING WITH REDUCED DYNAMIC RANGE - Envelope power supply circuitry includes power converter circuitry and envelope tracking circuitry. The power converter circuitry is configured to receive an envelope power converter control signal and a supply voltage and provide an envelope power supply signal for an amplifier from the supply voltage and based on the envelope power converter control signal. The envelope tracking circuitry is coupled to the power converter circuitry. In a first mode of operation, the envelope tracking circuitry is configured to provide the envelope power converter control signal such that a gain of the amplifier remains substantially constant over a range of input power provided to the amplifier. In a second mode of operation, the envelope tracking circuitry is configured to limit the dynamic range of the envelope power supply signal. | 04-07-2016 |
20160142027 | AMPLIFIER AND RELATED METHOD - An amplifier applicable to an intra-band non-contiguous carrier aggregation (NCCA) band includes a first amplifier circuit and a second amplifier circuit. The NCCA band includes at least a primary component carrier (PCC) channel and a secondary component carrier (SCC) channel not adjacent to each other. The first amplifier circuit receives a first input signal, and generates a first output signal for undergoing down-conversion of one of the PCC channel and the SCC channel. The second amplifier circuit receives at least one second input signal, and generates a second output signal for undergoing down-conversion of another of the PCC channel and the SCC channel. The at least one second input signal received by the second amplifier circuit is provided by the first amplifier circuit according to the first input signal. | 05-19-2016 |