Class / Patent application number | Description | Number of patent applications / Date published |
455102000 | Plural modulation | 36 |
20080261541 | Method and Device for Amplifying an Amplitude and Phase Modulated Electric Signal - The aim of the invention is to suppress interference caused by a mismatch of the power amplifier of a polar-loop transmitter. To achieve this, the crest factor of the output signal from the power amplifier is measured during operation to detect the state of the mismatch and to identify the modification of the transfer characteristic curve of the power amplifier. The crest factor that have been determined are compared with a target value and if the crest factor deviates from the target value, the bandwidth or the amplification of the amplitude closed loop is adapted accordingly., The transmitter can thus regulate the non-linear distortion that occur as a result of the mismatch. Said measures improve the linear behavior or degree of efficiency of the power amplifier. | 10-23-2008 |
20080299916 | LOW NOISE RF DRIVER - A low noise RF driver circuit including at least two series-coupled driver stages which receive a frequency modulated signal and an amplitude modulated signal that is applied to the supply voltage input of the driver stages, and provide a combined output signal. The RF driver circuit can be implemented in CMOS technology and integrated with other components of an RF communication subsystem, such as an RF transceiver circuit and power amplifier. Each driver stage includes a complementary pair of transistors with source degeneration resistors for linearity and gain control. | 12-04-2008 |
20090011723 | Transmitting apparatus - A transmitting apparatus of the present invention includes an orthogonal modulator for generating a modulated signal by using an input signal; a polar-modulation-mode transmission circuit which includes a first power amplifier whose input terminal receives a phase component of the modulated signal generated by the orthogonal modulator and whose power supply terminal receives an amplitude component of the modulated signal generated by the orthogonal modulator, and which polar-modulates the modulated signal; an orthogonal-modulation-mode transmission circuit which includes a second power amplifier whose input terminal receives the modulated signal generated by the orthogonal modulator and whose power supply terminal receives a constant voltage, and which transmits the modulated signal; and a switch for connecting an output of the orthogonal modulator with an input of the polar-modulation-mode transmission circuit at the time of a high output, and for connecting the output of the orthogonal modulator and an input of the orthogonal-modulation-mode transmission circuit at the time of an low output. | 01-08-2009 |
20090023402 | POLAR MODULATION CIRCUIT, INTEGRATED CIRCUIT AND RADIO APPARATUS - An object of the invention is to provide a polar modulation circuit capable of reducing the capacity of data stored in memory and suppressing an increase in the circuit scale related to distortion compensation while assuring the compensation accuracy. The polar modulation circuit according to the invention stores output signal characteristic relative to the control voltage at the steady state after input of the control voltage for a predetermined input amplitude of an input high frequency signal as the basis of distortion compensation of an amplifier separately into an offset storage section | 01-22-2009 |
20090088091 | Transmitter for Multiple Standards - Generally, implementations provide a circuit framework that uses phase and amplitude modulation with several voltage-controlled-oscillators (VCOs) and corresponding variable gain amplifiers (VGAs) to generate and amplitude and phase modulated signals that are summed to an output signal for a transmitter circuit. The implementations can involve decomposing an input signal into a number of decomposed signals using a signal decomposer component, in which each of decomposed signals includes phase and amplitude information. The signal decomposer component can interact with each of the VCOs and corresponding VGAs to conduct the phase and amplitude modulation for the amplitude and phase modulated signals. The multiple standard transmitter circuit can be used for one or more communication standards, such as Global System for Mobile Communications (GSM), a Wideband Code Division Multiple Access (WCDMA), or High-Speed Uplink Packet Access (HSUPA), among others. | 04-02-2009 |
20090098839 | Transmitter and communication apparatus - A modulator | 04-16-2009 |
20090124217 | Method and Apparatus for Enhancing Signal Carrier Performance in Wireless Networks - A wireless communications system can include a charged particle generator configured to generate plural energized particles and a charge transformer configured to receive the plural energized particles that include charged particles from the charged particle generator and to output energized particles that include particles having substantially zero charge. The charged particle generator can be configured to direct the plural energized particles through the charge transformer to propagate through free space until received by a broadband signal receiver that can demodulate a data signal to complete the data communication. | 05-14-2009 |
20090156142 | TRANSMITTER AND COMMUNICATION APPARATUS - A signal generation section | 06-18-2009 |
20090176464 | Multiple-mode modulator to process baseband signals - A multiple-mode modulator is configured similarly to a direct conversion quadrature modulator with an infusion of an amplitude modulation signal path from a large signal polar modulator to improve the power amplifier efficiency. The multiple-mode modulator also includes a radio frequency signal path. The multiple-mode modulator is configured to receive a baseband signal, convert the baseband signal to a radio frequency (RF) signal, and to process the RF signal according to either a polar mode or a quadrature mode, depending on a time-varying input voltage of the RF signal. When the power amplifier operates in the linear region, the RF signal is processed according to the quadrature mode. When the power amplifier operates in the compressed region, the RF signal is processed according to the polar mode. The multiple-mode modulator can be configured according to a small signal polar architecture or a large signal polar architecture, having either an open-loop or closed-loop configuration. | 07-09-2009 |
20090191825 | CONFIGURABLE RF TRANSMITTER - An RF transmitter includes a Cartesian to polar conversion section, a PLL, a DAC module, a mixing module, and a PA module. The Cartesian to polar conversion section converts a Cartesian based symbol stream into a polar based symbol stream. The PLL generates an oscillation when the RF transmitter is in a Cartesian mode or a phase modulated oscillation based on phase modulation information of the polar based symbol stream when the RF transmitter is in a polar mode. The mixing module mixes an analog Cartesian based signal with a local oscillation to produce a Cartesian based up converted signal when the RF transmitter is in the Cartesian mode and mixes an analog amplitude signal with a phase modulated local oscillation to produce a polar based up converted signal when the RF transmitter is in the polar mode. The PA module amplifies the Cartesian based up converted signal to produce an outbound RF signal when the RF transmitter is in the Cartesian mode and amplifies the polar based up converted signal to produce the outbound RF signal when the RF transmitter is in the polar mode. | 07-30-2009 |
20090203334 | RF POLAR TRANSMITTER WITH CONTROLLED AMPLITUDE MODULATION AND METHODS FOR USE THEREWITH - A radio frequency (RF) transmitter includes a transmitter processing module that generates a phase signal that is phase modulated based on outbound data and that generates a amplitude signal that is amplitude modulated based on the outbound data, wherein the amplitude signal is generated in accordance with an amplitude transition rule that restricts an amplitude transition between consecutive amplitudes of the amplitude signal. An up-conversion module phase modulates an oscillation based on the phase signal to generate an up-converted signal. A radio transmitter front-end includes a polar amplifier that amplifies and amplitude modulates the up-converted signal based on the amplitude signal to generate a transmit signal. | 08-13-2009 |
20090258610 | APPARATUS FOR MULTIPLE MODULATIONS WITH A TRANSITION MODE IN A BASEBAND TRANSMITTER AND METHOD THEREFOR - An apparatus for multiple modulations with a transition mode in a baseband transmitter and method therefor. An apparatus includes a first modulator, a second modulator, and a modulation output device. The first modulator performs a first modulation to produce a first modulated signal. The second modulator performs a second modulation to produce a second modulated signal. In response to a mode selection signal indicating switching the desired modulation output signal from a current one of the first and the second modulated signals to another one thereof, the modulation output device operates in a transition mode for a transition period to generate the desired modulation output signal according to a weighted sum of the first modulated signal and the second modulated signal. After the transition period, the modulation output device outputs the another one as the desired modulation output signal. | 10-15-2009 |
20090270053 | CALIBRATING AMPLITUDE AND PHASE IMBALANCE AND DC OFFSET OF AN ANALOG I/Q MODULATOR IN A HIGH-FREQUENCY TRANSMITTER - The object of the invention, which relates to a method and an arrangement for calibrating an analog I/Q modulator in a high-frequency transmitter, is to provide a method and an associated circuit arrangement by means of which a calibration of the I/Q modulator is carried out without a balancing operation and thus the complexity is minimized. According to the invention, this object is achieved, in terms of the method, in that transmission signals are produced by the I/Q modulator in three method steps in accordance with the method and said transmission signals are in each case evaluated and the results of the evaluations are stored, in that, in a fourth method step, improved compensation coefficients are calculated on the basis of the results of the previous evaluations, which improved compensation coefficients can be used for a subsequent run-through of the method, and in that the run-throughs of the method are repeated until the error of the amplitude and/or phase response of the I/Q modulator lies below a defined threshold value or a defined number of run-throughs of the method is reached. | 10-29-2009 |
20090280756 | RF INTEGRATED CIRCUIT WITH TRANSMITTER AND MULTIPURPOSE OUTPUT PORTS AND METHODS FOR USE THEREWITH - An RF integrated circuit (IC) includes a first IC port for coupling a first transmit signal in a first frequency band to at least one external device and a second IC port for coupling a second transmit signal in a second frequency band to the at least one external device. A transmitter module responds to outbound data to generate the first transmit signal in a first mode of operation and to generate the second transmit signal in a second mode of operation, wherein the transmitter module generates the first transmit signal and the second transmit signal in a selected one of a plurality of wireless telephony formats based on a control signal, and wherein the plurality of wireless telephony formats includes a code divisional multiple access format and at least one non-code division multiple access format. | 11-12-2009 |
20090291648 | METHODS AND APPARATUS FOR RECONSTRUCTING AMPLITUDE MODULATION SIGNALS IN POLAR MODULATION TRANSMITTERS - Methods and apparatus for reconstructing discrete-time amplitude modulation signals in polar modulation transmitters. An exemplary polar modulation transmitter includes a symbol generator, a rectangular-to-polar converter, a peak phase detector, and an amplitude modulation reconstruction circuit. The symbol generator generates rectangular-coordinate modulation symbols from which the rectangular-to-polar converter generates an amplitude modulation signal containing discrete-time amplitude samples and an angle modulation signal containing discrete-time angle samples. The peak phase detector circuit detects phase reversals or near phase reversals represented in samples of the angle modulation signal. The amplitude modulation reconstruction circuit responds by reconstructing samples in the amplitude modulation signal that correspond to detected phase reversals or a near phase reversals represented in samples of the angle modulation signal. | 11-26-2009 |
20090311979 | POLAR MODULATOR WITH PATH DELAY COMPENSATION - A modulation system comprising a signal processing unit and a modulator. The signal processing unit may generate a low frequency modulator signal, a high frequency modulator signal, and a modulator amplitude control signal. The modulator may generate a modulated signal for transmission via a wireless network based, at least in part, on the low frequency modulator signal, the high frequency modulator signal, and the modulator amplitude control signal. The signal processing unit comprises a delay compensation unit for delaying the generation of the high frequency modulator signal and the modulator amplitude control signal based, at least in part, on signal generation and modulation path delays associated with the low frequency modulator signal to substantially align the modulator signals at the output of the modulation system. | 12-17-2009 |
20100003932 | TRANSMITTER AND COMMUNICATION APPARATUS USING THE SAME - A signal generating section | 01-07-2010 |
20100009641 | DIGITAL RF PHASE CONTROL IN POLAR MODULATION TRANSMITTERS - An exemplary modulator apparatus for a polar modulation transmitter includes a phase difference extractor, a phase modulator, and a coarse phase controller. The phase difference extractor is configured to extract +180° and −180° phase differences represented in a phase-difference modulation signal in a phase modulation path of the polar modulation transmitter, or extract other phase differences exceeding other predetermined phase difference thresholds, to produce a bandwidth-reduced phase-difference modulation signal. The phase modulator includes a controlled oscillator having a tuning port that is modulated by phase differences represented in the bandwidth-reduced phase-difference modulation signal, to produce a phase-modulated RF carrier signal. The coarse phase controller operates to effectuate phase reversals or introduce other coarse phase changes into the phase-modulated RF carrier signal, based on the phase differences extracted from the original phase-difference modulation signal. | 01-14-2010 |
20100015932 | SIGNAL DECOMPOSITION METHODS AND APPARATUS FOR MULTI-MODE TRANSMITTERS - A multi-mode communications transmitter includes a signal decomposer that converts rectangular-coordinate in-channel and quadrature channel signals into polar-coordinate amplitude and angle component signals and form therefrom first and second modulation signals. The signal decomposition process performed by the signal decomposer combines envelope-reduction and restoration (ERR) with filtering to reduce the bandwidths of the first and second modulation signals compared to the bandwidths of the unmodified amplitude and angle component signals. The reduction in signal bandwidths eases the design requirements of the electrical components needed to process and generate the signals applied to the power supply and radio frequency (RF) input ports of the multi-mode communications transmitter's power amplifier (PA). It also makes the multi-mode communications transmitter more forgiving to gain and delay mismatches between the signals applied to the power supply and RF input ports of the PA, compared to conventional polar modulation transmitters. | 01-21-2010 |
20100029224 | POLAR MODULATION TRANSMISSION APPARATUS - By compensating for a detection result of the detector in feedback control of output power of the power amplifier, the polar modulation transmission apparatus is able to realize accurate transmission power control. Polar modulation transmission apparatus | 02-04-2010 |
20100105341 | TRANSMITTER AND CONTROL METHOD FOR TRANSMITTING AND CALIBRATING A PHASE SIGNAL AND AN AMPLITUDE SIGNAL - A transmitter for transmitting and calibrating a phase signal and an amplitude signal. The transmitter comprises a phase modulation path, an amplitude modulation path, and a control unit. The phase modulation path transmits the phase signal. The amplitude modulation path transmits the amplitude signal. The control unit delays the signal on at least one of the phase modulation path and the amplitude modulation. | 04-29-2010 |
20100130143 | PHASE-TO-FREQUENCY CONVERSION FOR POLAR TRANSMITTERS - The present invention relates to a polar transmission method and a polar transmitter for transmitting phase and amplitude components derived from in-phase (I) and quadrature-phase (Q) components of an input signal. A first conversion is provided for converting the in-phase (I) and quadrature-phase (Q) components into the phase and amplitude components at a first sampling rate. Additionally, a second conversion is provided for converting the phase component into a frequency component, wherein the second conversion comprises a rate conversion for converting the first sampling rate into a lower second sampling rate at which the frequency component is provided. Thereby, the second sampling rate can be used as a lower update rate in a digitally controlled oscillator in order to save power or because of speed limitations, while the surplus phase samples obtain due to the higher first sampling rate enable better approximation of the phase component after the digitally controlled oscillator. This better approximation accounts for a cleaner spectrum around the synthesized channel. | 05-27-2010 |
20100203851 | WIRELESS TRANSMISSION DEVICE AND WIRELESS TRANSMISSION METHOD - A wireless transmission device includes an adding/subtracting unit configured to subtract a second signal and a third signal from a first signal to generate the second signal; a modulating unit configured to modulate the second signal to generate a fourth signal; a demodulating unit configured to demodulate the fourth signal to generate the third signal; and a transmitting unit configured to transmit the fourth signal. | 08-12-2010 |
20100203852 | FREQUENCY MODULATION CIRCUIT, TRANSMITTER, AND COMMUNICATION APPARATUS - A bandpass type delta sigma modulation section | 08-12-2010 |
20100222015 | POLAR MODULATION TRANSMITTER, ADAPTIVE DISTORTION COMPENSATION PROCESSING SYSTEM, POLAR MODULATION TRANSMISSION METHOD, AND ADAPTIVE DISTORTION COMPENSATION PROCESSING METHOD - An object of the invention is to provide a polar modulation transmitter that can perform adaptive distortion compensation processing without the need for a synchronization adjustment circuit for synchronizing an input baseband signal and an output signal of a power amplifier. An adaptive operation control section | 09-02-2010 |
20100240328 | RF TRANSMITTER FRONT-END AND APPLICATIONS THEREOF - A radio frequency (RF) transmitter front-end includes a digital to analog conversion module and a power amplifier module. The digital to analog conversion module is coupled to convert amplitude information into analog amplitude adjust signals when a first mode is active and is coupled to convert power level information into analog power level signals when a second mode is active. The power amplifier module is coupled to amplify first phase modulated RF signals in accordance with the analog amplitude adjust signals to produce first outbound RF signals when the first mode is active and is coupled to amplify second phase modulated RF signals in accordance with the analog power level signals to produce second outbound RF signals when the second mode is active. | 09-23-2010 |
20100291885 | MULTIMODE-COMPAIBLE POLAR MODULATION TRANSMISSION DEVICE AND MULTIMODE RADIO COMMUNICATION METHOD - An object of the invention is to provide a multimode polar modulation device and a multimode radio communication method for making it possible to decrease the distortion compensation processing data capacity while maintaining the distortion compensation accuracy and also making it possible to efficiently store the distortion compensation processing data corresponding to a multimode modulation signal adaptively acquired in memory. | 11-18-2010 |
20110183636 | RADIO FREQUENCY TRANSMITTER HAVING AN AMPLIFIER WITH POWER SUPPLY MODULATION - A circuit including a carrier amplifier having an input, an output, a first transistor coupled to a first power supply voltage terminal for receiving a modulated power supply voltage, and a second transistor coupled to a second power supply voltage terminal for receiving a fixed power supply voltage is provided. The circuit further includes a peaking amplifier having an input coupled to the input of the carrier amplifier and an output coupled to the output of the carrier amplifier. | 07-28-2011 |
20110300816 | SYSTEM AND METHOD FOR TRANSMITTING A BASEBAND REAL SIGNAL WITH A NON-CONSTANT ENVELOPE USING A POLAR TRANSMITTER - A system and method for transmitting a baseband real signal with a non-constant envelope using a polar transmitter involves decomposing a baseband real signal into a non-constant envelope signal of the baseband real signal and a sign signal of the baseband real signal, where the sign signal restores zero crossing regions of the non-constant envelope signal, modulating a carrier signal with the sign signal of the baseband real signal to generate a modulated signal, converting the non-constant envelope signal of the baseband real signal into a voltage signal using a voltage controlled supply regulator, amplifying the modulated signal into an amplified signal based on the voltage signal, and transmitting the amplified signal to an external wireless device. | 12-08-2011 |
20120021706 | METHOD AND SYSTEM FOR SIMULTANEOUS SIGNAL TRANSMISSION ON MULTIPLE SELECTED FREQUENCIES - Aspects of a method and system for simultaneous signal transmission on multiple selected frequencies may include generating from a single baseband signal, a plurality of radio frequency transmission signals each at a different radio frequency, wherein the single baseband signal comprises an in-phase signal component and/or a quadrature signal component. The single baseband signal, to generate said plurality of radio frequency transmission signals, may be modulated in a single radio frequency transmission chain, the radio frequency transmission chain comprising intermediate frequency modulation and radio frequency modulation. The plurality of radio frequency transmission signals may be a radio frequency signal and a corresponding image frequency signal, based on the intermediate frequency modulation and the radio frequency modulation. The signals resulting from the intermediate frequency modulation and the radio frequency modulation may be filtered to preserve the radio frequency signal and the corresponding image frequency signal. | 01-26-2012 |
20120157016 | TRANSMITTER, RF TRANSMITTER SIGNAL PROCESSOR AND METHOD FOR OPERATION OF TRANSMITTER - An internal operation of RF IC is adjusted so that the level of an RF transmitter signal is substantially stopped from rising, or made to descend in course of ramp-up of the RF transmitter signal. This adjustment is enabled by ramp-up adjustment data Last 4 symbols contained in preamble data precedent to real transmission data transmitted after completion of ramp-up. The ramp-up adjustment data and real transmission data are supplied from a baseband LSI. The RF transmitter signal contains phase and amplitude modulation components according to the EDGE system. RF IC includes phase and amplitude modulation control loops PM LP and AM LP. Ramp-up of RF power amplifiers PA | 06-21-2012 |
20120184227 | WIRELESS TRANSMISSION APPARATUS, WIRELESS TRANSMISSION METHOD AND COMPUTER PROGRAM - A traffic amount calculation portion calculates a traffic amount caused by transmission signals received by a transmission signal reception portion. An average traffic amount calculation portion calculates an average traffic amount that is an average of the traffic amount in a nearest predetermined interval. Further, a modulation method setting portion changes a modulation method used by a modulation portion based on the calculated average traffic amount. In addition, a transmission portion transmits transmission signals by using a transmission power amount corresponding to the modulation method used by the modulation portion. | 07-19-2012 |
20130072138 | Wireless Device with N-Phase Transmitter - Methods and systems for an n-phase transmitter utilizing a leaky wave antenna (LWA) are disclosed and may include transmitting an n-phase wireless signal at a first frequency via the LWA utilizing a plurality of second frequency signals from one or more signal sources, and the second frequency may be lower than the first frequency. Each of the second frequency signals may be configured with a phase difference and may be communicated to the LWA utilizing one or more power amplifiers (PAs). The PAs may be operated in switching mode, thereby generating a square wave. The LWAs may be integrated on the chip, on a package to which the chip is affixed, and/or on a printed circuit board to which the chip is affixed. Square wave signals may be generated utilizing the signal sources. The transmitted wireless signal may be amplitude modulated utilizing a bias voltage applied to the LWAs. | 03-21-2013 |
20130244599 | TRANSMITTER - Embodiments provide a transmitter and a method for transmitting data via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency. In one embodiment the transmitter includes a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and an alternative local oscillator frequency, different to the first frequency, in dependence on a required signal strength of the first signal relative to a required signal strength of the second signal. | 09-19-2013 |
20130316666 | DYNAMICALLY RECONFIGURABLE UNIVERSAL TRANSMITTER SYSTEM - A dynamically reconfigurable universal transmitter system is disclosed herein. The electronic device includes multiple transmitter resources for generating transmission signals, an output bus; and an antenna summer coupled to the output bus. The output bus is selectively coupled to the plurality of transmitter resources and it selectively receives transmission signals from the plurality of transmission resources. The antenna summer stores transmission signals received on the output bus. | 11-28-2013 |
20150118979 | APPARATUS AND METHOD FOR CONTROLLING SIGNAL GAIN IN WIRELESS TRANSMITTER - To control a gain of a transmit signal in a wireless transmitter, the wireless transmitter is provided. The wireless transmitter includes a baseband processor for processing an analog baseband transmit signal, and a Radio Frequency (RF) signal processor including a plurality of mixers. The plurality of mixers are configured to share an output signal of the baseband processor as an input. | 04-30-2015 |