Class / Patent application number | Description | Number of patent applications / Date published |
451061000 | Hollow work | 11 |
20090042491 | METHOD AND APPARATUS FOR CIRCUMFERENTIAL INTERIOR TREATMENT OF PIPE ELBOWS - A method for the circumferential interior treatment of pipe elbows, including a step of positioning a working member within a pipe elbow and moving the working member along a portion of a length of the pipe elbow between selected working positions, while concurrently manipulating the pitch and rotational positioning of the pipe elbow to maintain a concentric rotation of the pipe elbow about the working member. | 02-12-2009 |
20100062692 | HONING METHOD AND HONING MACHINE - A honing processing technology for making uniform the load applied to honing grindstones by cooperating the reciprocal motion of the honing grindstones with the feeding and expanding motion at high precision by a specified relation. Servo motors are used as drive sources respectively for spindle reciprocal drive part and grindstone depth cutting part, and these two servo motors are mutually cooperated, and the feeding and expanding motion of the honing grindstones is controlled to be synchronized and tuned with the ascending and descending (reciprocal) motion of the honing tool so that the processing load applied to the honing grindstones may be averaged. Hence, without modifying the basis existing mechanical elements, the load applied to the honing grindstones may be averaged, and the honing process may be stabilized in precision and enhanced in precision. | 03-11-2010 |
20100120337 | CUTTING METHOD AND CUTTING DEVICE FOR HARD MATERIAL - A method of cutting a workpiece made of a highly-hard material is provided. The workpiece is cut by a machining device including a workpiece holder that holds the workpiece, a spindle device that rotates the workpiece holder, a tool holder that holds a tool, and a relative moving mechanism that relatively moves the workpiece holder and the tool holder at least in two axial directions orthogonal to each other. In the machining device, positioning errors in the axial directions are within 5 nm. | 05-13-2010 |
20100210190 | Device for Fine Machining Workpieces - The invention relates to a device for fine machining workpieces, preferably for honing and/or fineboring cylinder bores in crankcases of internal combustion engines, wherein inside a module ( | 08-19-2010 |
20110014854 | TOOL HOLDER - A tool holder is provided with a main body, a taper cone, a working portion, a coolant flow passage, and an adjuster. The taper cone includes a taper portion and movable in an axial direction of the main body. The working portion is mounted on an outer peripheral portion of the main body and includes a taper bottom surface which engages with the taper portion. The taper bottom surface is movable in a radial direction of the main body based on a movement of the taper cone in the axial direction. A coolant flows through the coolant flow passage such that a part of the coolant presses and moves the taper cone in the axial direction and another part of the coolant flows out to an outside so as to adjust a pressing force. The adjuster is fitted into a hole penetrating the main body and includes a coolant flow-out hole for adjusting a flow-out of the coolant. | 01-20-2011 |
20110053469 | Abrasive Cutting Tool - A tool for removing material from a surface includes a body defining a longitudinal bore and an opening connecting an outer surface of the body to the longitudinal bore. A cutting element comprising a cutting surface is dimensioned to be at least partially received by the opening. The cutting surface is configured to translate from a first position to a second position in response to a centrifugal force. In the second position the cutting surface is extended outwardly through the opening, beyond the outer surface of the body. In one example, the tool may be used to remove material, such as oxidation, from the inner walls of a cylindrical article selected from a pipe and a tube. | 03-03-2011 |
20110244765 | BURR REMOVAL APPARATUS - Apparatus for removing a burr from an aperture in a workpiece, using a rotating deburring tool having a flexible of partly flexible shaft, an abrasive mechanism that rotates on the shaft and a collar that protects the workpiece from abrasion when the abrasive mechanism is being positioned for deburring. Optionally, the shaft and abrasive mechanism move laterally as they rotate. Optionally, a shaft holder includes a protective surrounding sleeve to catch or deflect any fragment of the shaft holder that might fly off. Optionally, the shaft and the workpiece rotate independently of each other. Two or more different abrasive mechanisms can be simultaneously attached to the shaft. The cross-sectional shape of the abrasive mechanism may be curvilinear and/or polygonal, depending upon shape of the workpiece surface. Optionally, a shaft restrictor receives the shaft and limits lateral motion of the rotating shaft. The shaft optionally includes a rotatable mass that provides additional rotational inertia after the shaft is initially spun up. | 10-06-2011 |
20120064806 | System for dispensing abrasives into a gas stream for cleaning pipe interiors - A system and method for dispensing abrasive particulate material into a stream of air or gas for introduction into a pipe for the purpose of cleaning the pipe and preparing the inner surface for coating or lining. The system comprises an air blower coupled to the pipe, and generates the stream of air or gas, and a three component feed assembly for dispensing the abrasive particulate material. The feed assembly operates at atmospheric pressure and is in fluid communication with each of the pipe and the air blower, and is used to meter the abrasive particulate material into the stream of gas for introduction into the pipe. The system further comprises a shut-off valve that is in fluid communication with the feed assembly, the air blower and the pipe and is cycled to isolate the feed assembly from the air blower during pipe drying and maintenance operations. | 03-15-2012 |
20130309947 | BURR REMOVAL APPARATUS - Apparatus for removing a burr from an aperture in a workpiece, using a rotating deburring tool having a flexible of partly flexible shaft, an abrasive mechanism that rotates on the shaft and a collar that protects the workpiece from abrasion when the abrasive mechanism is being positioned for deburring. Optionally, the shaft and abrasive mechanism move laterally as they rotate. Optionally, a shaft holder includes a protective surrounding sleeve to catch or deflect any fragment of the shaft holder that might fly off. Optionally, the shaft and the workpiece rotate independently of each other. Two or more different abrasive mechanisms can be simultaneously attached to the shaft. The cross-sectional shape of the abrasive mechanism may be curvilinear and/or polygonal, depending upon shape of the workpiece surface. Optionally, a shaft restrictor receives the shaft and limits lateral motion of the rotating shaft. The shaft optionally includes a rotatable mass that provides additional rotational inertia after the shaft is initially spun up. | 11-21-2013 |
20140308881 | BURR REMOVAL APPARATUS - Apparatus for removing a burr from an aperture in a workpiece, using a rotating deburring tool having a flexible of partly flexible shaft, an abrasive mechanism that rotates on the shaft and a collar that protects the workpiece from abrasion when the abrasive mechanism is being positioned for deburring. Optionally, the shaft and abrasive mechanism move laterally as they rotate. Optionally, a shaft holder includes a protective surrounding sleeve to catch or deflect any fragment of the shaft holder that might fly off. Optionally, the shaft and the workpiece rotate independently of each other. Two or more different abrasive mechanisms can be simultaneously attached to the shaft. The cross-sectional shape of the abrasive mechanism may be curvilinear and/or polygonal, depending upon shape of the workpiece surface. Optionally, a shaft restrictor receives the shaft and limits lateral motion of the rotating shaft. The shaft optionally includes a rotatable mass that provides additional rotational inertia after the shaft is initially spun up. | 10-16-2014 |
20190145010 | CHEMICAL PROCESSING OF ADDITIVE MANUFACTURED WORKPIECES | 05-16-2019 |