Class / Patent application number | Description | Number of patent applications / Date published |
445035000 | Electrode making | 11 |
20080200089 | Manufacturing method for an LED light string and a jig for making the LED light string - A method of manufacturing an LED light string using a jig having a main body and a plurality of spiral grooves formed thereon adjacent to each other is provided. The method includes winding an electrical wire in each of the grooves, removing portions of the electrical wires to provide a plurality of spaced exposed segments at successive locations on each of the electrical wires, placing LED chips on at least some of the plurality of exposed segments formed in one of the electrical wires, connecting each LED chip to a corresponding exposed segment on a different electrical wire by a connector, and sealing each LED chip and connector. A jig for attaching one or more LED chips to a plurality of electrical wires is also provided. | 08-21-2008 |
20080293320 | ELECTRODE AND ELECTRODE HOLDER WITH THREADED CONNECTION - A threaded connection for an electrode holder and an electrode in a plasma arc torch is provided. The threaded connection has relatively low height, and the engaged portion of a male threaded portion of the electrode and a female threaded portion of the electrode holder are positioned at least partially within a nozzle chamber. In one inventive aspect, the nominal pitch diameter of the electrode is less than the minor diameter of the electrode. In another, the width of the root area of the electrode thread is wider than the width of the root area of the electrode holder thread by at least about 35%. The width of the root area of the electrode is at least about 15% wider than the width of the crest portion of the electrode. As such, the less consumable of the two parts, the electrode holder, is provided with a thread that is less likely to be worn and damaged. In one particular embodiment, the crest profile of the electrode is that of a Stub Acme thread separated by a larger root profile. | 11-27-2008 |
20100015878 | METHOD FOR ASSEMBLING INDIRECTLY-HEATED CATHODE ASSEMBLY - A width of a groove of a cathode holder and a thickness of a cathode conductor are determined so that a dimension which is obtained by subtracting the thickness from the width is equal to a gap length which has a predetermined length, and which is between a filament and a cathode. Then, the cathode holder is rearward pushed to cause a front end face of the groove | 01-21-2010 |
20100216366 | FABRICATING METHOD OF ELECTRON-EMITTING DEVICE - A fabricating method of an electron-emitting device is provided. The fabricating method of the electron-emitting device includes at least following procedures. Firstly, a substrate is provided. Next, a first electrode and a second electrode are formed on the substrate. Afterward, a conductive layer covering the first electrode and the second electrode is formed on the substrate. Then, a first conductive layer, a second conductive layer and a gap are formed by patterning the conductive layer. The gap is disposed between the first conductive layer and the second conductive layer. After that, a plasma process is performed at the first conductive layer and second conductive layer. | 08-26-2010 |
20110059671 | METHOD FOR SURFACE TREATING COLD CATHODE - A method for surface treating a cold cathode includes the following steps. A cold cathode is provided and the cold cathode includes a plurality of field emitters. A liquid glue is placed on a surface of the cold cathode. The liquid glue is cured to form solid glue on the surface of the cold cathode. The solid glue is removed to allow the plurality of field emitters to stand upright. | 03-10-2011 |
20110244753 | ELECTRON MULTIPLIERS AND MICROCHANNEL PLATES - An electron multiplier can be fabricated by depositing an electron emissive material on a reticulated substrate, and forming the reticulated substrate into the electron multiplier. | 10-06-2011 |
20110287684 | METHOD FOR MAKING FIELD EMISSION DEVICE - A method for making a field emission device includes the following steps. An insulative substrate is provided. An electron pulling electrode is formed on the insulative substrate. A secondary electron emission layer is formed on the electron pulling electrode. A first dielectric layer is fabricated. The first dielectric layer has a second opening to expose the secondary electron emission layer. A cathode plate having an electron output portion is provided. An electron emission layer is formed on part surface of the cathode plate. The cathode plate is placed on the first dielectric layer. The electron output portion and the second opening have at least one part overlapped, and at least one part of the electron emission layer is oriented to the secondary electron emission layer via the second opening. | 11-24-2011 |
20120178335 | METHOD TO MANUFACTURE REDUCED MECHANICAL STRESS ELECTRODES AND MICROCAVITY PLASMA DEVICE ARRAYS - In a preferred method of formation embodiment, a thin metal foil or film is obtained or formed with microcavities (such as through holes). The foil or film is anodized symmetrically so as to form a metal-oxide film on the surface of the foil and on the walls of the microcavities. One or more self-patterned metal electrodes are automatically formed and simultaneously buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity, and electrodes for adjacent microcavities can be isolated or connected. If the microcavity is cylindrical, the electrodes form as rings around each cavity. | 07-12-2012 |
20120282839 | MANUFACTURING METHOD OF LIGHT EMITTING DEVICE - There is provided a method for manufacturing a light emitting device including a plurality of organic EL elements, in which a plurality of rows extending in a row direction different from a predetermined column direction are set at predetermined intervals in the column direction on a plane, and the plurality of organic EL elements are provided in each of the rows at predetermined intervals in the row direction. Each of the plurality of organic EL elements includes a pair of electrodes, and a common layer that is commonly provided for each of the organic EL elements between the electrodes. The method for manufacturing a light emitting device includes a step of forming the common layer. In the step of forming the common layer, the process of applying and forming the common layer is performed (m+1) times at intervals of m row in the column direction to the rows in which the common layer is not formed. | 11-08-2012 |
20120295508 | ORGANIC LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, AND SHADOW MASK THEREFOR - The present invention relates to an organic light emitting device, and the organic light emitting device according to an exemplary embodiment of the present invention includes a blue subpixel that is larger than a red subpixel and a green subpixel. The red subpixel and the green subpixel have the same layered structure such that the red subpixel and the green subpixel are formed by using the same shadow mask. | 11-22-2012 |
20140141686 | SYSTEMS AND METHODS FOR FABRICATING CARBON NANOTUBE-BASED VACUUM ELECTRONIC DEVICES - Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container. | 05-22-2014 |