Class / Patent application number | Description | Number of patent applications / Date published |
429235000 | Having particulate or fibrous porous mass including a sintered mass | 14 |
20110206992 | POROUS STRUCTURES FOR ENERGY STORAGE DEVICES - The present invention relates to porous structures for energy storage devices. In some embodiments, the porous structure can comprise sulfur and be used in electrochemical cells. Such materials may be useful, for example, in forming one or more electrodes in an electrochemical cell. For example, the systems and methods described herein may comprise the use of an electrode comprising a conductive porous support structure and a plurality of particles comprising sulfur (e.g., as an active species) substantially contained within the pores of the support structure. The inventors have unexpectedly discovered that, in some embodiments, the sizes of the pores within the porous support structure and/or the sizes of the particles within the pores can be tailored such that the contact between the electrolyte and the sulfur is enhanced, while the electrical conductivity and structural integrity of the electrode are maintained at sufficiently high levels to allow for effective operation of the cell. Also, the sizes of the pores within the porous support structures and/or the sizes of the particles within the pores can be selected such that any suitable ratio of sulfur to support material can be achieved while maintaining mechanical stability in the electrode. The inventors have also unexpectedly discovered that the use of porous support structures comprising certain materials (e.g., metals such as nickel) can lead to relatively large increases in cell performance. In some embodiments, methods for forming sulfur particles within pores of a porous support structure allow for a desired relationship between the particle size and pore size. The sizes of the pores within the porous support structure and/or the sizes of the particles within the pores can also be tailored such that the resulting electrode is able to withstand the application of an anisotropic force, while maintaining the structural integrity of the electrode. | 08-25-2011 |
20130045425 | THREE-DIMENSIONAL NETWORK ALUMINUM POROUS BODY, CURRENT COLLECTOR AND ELECTRODE EACH USING THE ALUMINUM POROUS BODY, AND NONAQUEOUS ELECTROLYTE BATTERY, CAPACITOR AND LITHIUM-ION CAPACITOR WITH NONAQUEOUS ELECTROLYTIC SOLUTION, EACH USING THE ELECTRODE - It is an object of the present invention to provide a three-dimensional network aluminum porous body which can be used for a process continuously producing an electrode and enables to produce a current collector having small electric resistance in the current collecting direction, and an electrode using the aluminum porous body, and a production method thereof. In a sheet-shaped three-dimensional network aluminum porous body for a current collector, when one of two directions orthogonal to each other is taken as an X-direction and the other is taken as a Y-direction, a cell diameter in the X-direction of the three-dimensional network aluminum porous body differs from a cell diameter in the Y-direction thereof. | 02-21-2013 |
20140030604 | FIBER FELT CAPACITORS AND BATTERIES - An embodiment of the invention relates to providing an electrical component that provides an electrical functionality, the component comprising: a fiber felt comprising a tangle of fibers and characterized by a fill factor; and at least two layers of material formed on the fibers that contribute to providing the electrical functionality. | 01-30-2014 |
20140030605 | BATTERY HAVING ELECTRODE STRUCTURE INCLUDING METAL FIBER AND PREPARATION METHOD OF ELECTRODE STRUCTURE - The present invention relates to a battery having an electrode structure using metal fiber and a preparation method of an electrode structure. A preparation method of an electrode structure, according to one embodiment of the present invention, includes a step for providing one or more metal fibers forming a conductive network; a step for providing particle compositions including electrical active materials of a particle shape; a step for mixing the metal fibers and the particle compositions; and a step for compressing the mixed metal fibers and the particle compositions. | 01-30-2014 |
20140050988 | Apparatus and Associated Methods - An apparatus including a layer of electrically conductive material with an open interconnected wall structure of electrically conductive material formed thereon, the open interconnected wall structure having a gyroid structure including one or more open pores into which an active material for use in generating and/or storing electrical charge can be deposited, wherein the layer of electrically conductive material and the open interconnected wall structure together form a charge collector which provides an electrical path from the active material for the generated and/or stored electrical charge. | 02-20-2014 |
20140113201 | METHOD FOR THE PRODUCTION OF A POROUS ELEMENT, AND CELL OF A RECHARGEABLE OXIDE BATTERY - A method for producing a porous element is presented. A powdery metal-ceramic composite material is produced. The composite material has a metal matrix and a ceramic portion amounting to less than 25 percent by volume. The metal matrix is at least partially oxidized to obtain a metal oxide. The metal-ceramic composite material is grinded and mixed with powdery ceramic supporting particles to obtain a metal-ceramic/ceramic mixture. The metal-ceramic/ceramic mixture is shaped into the porous element. The porous element can be used as an energy storage medium in a battery. | 04-24-2014 |
20150030936 | COMPOSITE PARTICLES FOR ELECTROCHEMICAL DEVICE ELECTRODE, MANUFACTURING METHOD FOR COMPOSITE PARTICLES FOR ELECTROCHEMICAL DEVICE ELECTRODE, ELECTRODE MATERIAL FOR ELECTROCHEMICAL DEVICE, AND ELECTROCHEMICAL DEVICE ELECTRODE - Composite particles for an electrochemical device electrode including an electrode active material and a binding agent and having surfaces thereof coated with an external additive A, wherein at least one kind of the external additive A has a powder resistance of less than 10 Ω·cm, and, in the case where three axial diameters of the external additive A are a length diameter L | 01-29-2015 |
20150064569 | CURRENT COLLECTOR, ELECTRODE STRUCTURE, NONAQUEOUS ELECTROLYTE BATTERY, AND ELECTRICITY STORAGE COMPONENT - A current collector, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device capable of achieving superior shut down function, are provided. According to the present invention, a current collector | 03-05-2015 |
20160036059 | CURRENT COLLECTOR ALSO SERVING AS ELECTRODE FOR BATTERY, AND BATTERY INCLUDING THE SAME - A current collector also serving as an electrode for a battery includes a three-dimensional fiber composite in which a plurality of conductors are disposed in a three-dimensional void of a three-dimensional fiber assembly skeleton, the three-dimensional fiber assembly skeleton being formed by intersecting and assembling a plurality of irregular shaped carbon nano-tubes. An active material that is carried on the carbon nano-tubes or an active material that is carried on the conductors is accommodated in the three-dimensional void inside the three-dimensional fiber composite, and the three-dimensional fiber composite is shaped in a sheet shape. | 02-04-2016 |
20160111729 | ELECTRODE, METHOD OF FABRICATING THE SAME, AND BATTERY USING THE SAME - Provided are a non-woven fabric current collector and a method and system of fabricating a battery using the same. An electrode according to an embodiment of the present invention includes a non-woven fabric current collector including a conductive non-woven fabric sheet including a network of conductive fibers and pores for communication between a main surface and the interior thereof; and conductive patterns partially blocking the pores on the main surface of the conductive non-woven fabric sheet. | 04-21-2016 |
429236000 | Having coating in the pores | 1 |
20130323602 | COMPOSITE METAL FOIL AND PRODUCTION METHOD THEREFOR - A composite metal foil is provided comprising a porous metal foil comprising a two-dimensional network structure composed of a metal fiber, and a primer provided on at least a part of the interior and/or periphery of pores of the porous metal foil. According to the present invention, it is possible to obtain a composite metal foil which has a desired function imparted by a primer in addition to superior properties derived from a porous metal foil, in a highly productive and cost effective manner that is suited for continuous production. | 12-05-2013 |
429237000 | Having support or reinforcing member | 3 |
20130224601 | ELECTRODE STRUCTURE FOR ELECTROCHEMICAL CELL - The present invention relates to the use of porous structures comprising electrode active materials, which can be used as electrodes in electrochemical cells. In certain embodiments, the electrodes described herein can comprise a first porous support structure (e.g., a plurality of particles, which can be porous in certain cases) in which electrode active material is at least partially contained. The first porous support structure can be, in some embodiments, at least partially contained within the pores of a second porous support structure (e.g., an agglomeration of elongated fibers, a porous web formed by sintered particles, etc.) containing pores that are larger than the components of the first porous support structure. | 08-29-2013 |
20130260255 | NUCLEATION AND GROWTH OF TIN PARTICLES INTO THREE DIMENSIONAL COMPOSITE ACTIVE ANODE FOR LITHIUM HIGH CAPACITY ENERGY STORAGE DEVICE - Embodiments of the present invention generally relate to lithium-ion batteries, and more specifically, to a system and method for fabricating such batteries using thin-film processes that form three-dimensional structures. In one embodiment, an anodic structure used to form an energy storage device is provided. The anodic structure comprises a flexible conductive substrate, a plurality of conductive microstructures formed on the conductive substrate, comprising a plurality of columnar projections and dendritic structures formed over the plurality of columnar projections and a plurality of tin particles formed on the plurality of conductive microstructures. In another embodiment, the anodic structure further comprises a tin nucleation layer comprising tin particles formed on the flexible conductive substrate between the flexible conductive substrate and the plurality of conductive microstructures. | 10-03-2013 |
20160181620 | CURRENT COLLECTOR FOR SECONDARY BATTERY AND ELECTRODE USING SAME | 06-23-2016 |