Class / Patent application number | Description | Number of patent applications / Date published |
429309000 | Two or more polymers (i.e., polymer mixture) | 33 |
20090061324 | Rechargeable Lithium Battery and Method of Fabricating Same - Disclosed is a rechargeable lithium battery comprising a negative electrode and a positive electrode capable of intercalating and deintercalating lithium, and an electrolyte, wherein the electrolyte comprises a polyacrylate compound having three or more acrylic groups. | 03-05-2009 |
20090075176 | Solid Electrolyte Material Manufacturable by Polymer Processing Methods - The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1×10 | 03-19-2009 |
20090087751 | Solid electrolyte material of conducting lithium ion, battery device using the solid electrolyte material and all-solid lithium secondary battery provided with the battery device - A solid electrolyte material of conducting a lithium ion comprises a sulfide-based lithium-ion conductor and α-alumina. Such a solid electrolyte material exhibits superior lithium-ion conductivity. Further, a battery device provided with such a solid electrolyte material is also provided. Furthermore, an all-solid lithium-ion secondary battery provided with such a battery device is also provided. | 04-02-2009 |
20090104537 | Bilayer Electrolyte for a Lithium Battery - The invention relates to a bilayer polymer electrolyte for a lithium battery. | 04-23-2009 |
20090162754 | ELECTROLYTE FOR LITHIUM POLYMER BATTERIES - A solid polymer electrolyte for a battery is disclosed. The solid polymer electrolyte includes a first polymer capable of solvating a lithium salt, a lithium salt, and a second polymer which is at least partially miscible with the first polymer or rendered at least partially miscible with the first polymer; at least a portion of_the second polymer being crystalline or vitreous at the internal operating temperature of the battery. | 06-25-2009 |
20090208848 | Polymer blend electrolyte membrane for use at high temperature and manufacturing method thereof - The present invention relates to a polymer blend electrolyte membrane comprising an inorganic polymer having polydimethylsiloxane as a main chain, which has a pore structure at both ends formed by condensation reaction between 3-aminopropyltriethoxysilane and tetraethylorthosilicate, wherein phosphoric acid is chemically linked to an amino group of the pore structure; and a proton-conducting polymer having a cation exchange group at the side chain thereof, as well as a manufacturing method thereof. Generally, proton-conducting electrolyte membranes have significantly reduced ion conductivity at high temperatures. However, proton-conducting electrolyte membranes have advantages in terms of efficiency and cost, and thus it is needed to develop an electrolyte membrane, which has excellent ion conductivity even at high temperature. Accordingly, the present invention aims to provide a polymer blend electrolyte membrane for use at high temperature and a manufacturing method thereof. | 08-20-2009 |
20100075232 | COMPOSITE POLYMER ELECTROLYTES FOR A RECHARGEABLE LITHIUM BATTERY - The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces. | 03-25-2010 |
20100221614 | SOLID POLYMER ELECTROLYTES BASED ON TRIBLOCK COPOLYMERS, ESPECIALLY POLYSTYRENE-POLY(OXYETHYLENE)-POLYSTYRENE - Solid polymer electrolyte (SPE) comprising at least one electrolyte salt and at least one linear triblock copolymer A-B-A, in which:
| 09-02-2010 |
20110117441 | RECHARGEABLE LITHIUM BATTERY - A rechargeable lithium battery includes a positive electrode including a positive active material being capable of intercalating or deintercalating lithium; a negative electrode including a carbon-based negative active material and a water-soluble binder; and a polymer electrolyte including a polymer, a non-aqueous organic solvent and a lithium salt, wherein the polymer comprises a polymerization product of a first monomer represented by Chemical Formula 1 with a second monomer which is one or more of monomers represented by Chemical Formulae 2 to 7: | 05-19-2011 |
20110136016 | POLYMER BLEND PROTON EXCHANGE MEMBRANE AND METHOD FOR MANUFACTURING THE SAME - The present invention relates to a polymer blend proton exchange membrane comprising a soluble polymer and a sulfonated polymer, wherein the soluble polymer is at least one polymer selected from the group consisting of polysulfone, polyethersulfone and polyvinylidene fluoride, the sulfonated polymer is at least one polymer selected from the group consisting of sulfonated poly(ether-ether-ketone), sulfonated poly(ether-ketone-ether-ketone-ketone), sulfonated poly(phthalazinone ether keton), sulfonated phenolphthalein poly(ether sulfone), sulfonated polyimides, sulfonated polyphosphazene and sulfonated polybenzimidazole, and wherein the degree of sulfonation of the sulfonated polymer is in the range of 96% to 118%. The present invention further relates to a method for manufacturing the polymer blend proton exchange membrane. | 06-09-2011 |
20110229768 | MICROPOROUS POLYMER MEMBRANE MODIFIED BY AQUEOUS POLYMER, MANUFACTURING METHOD AND USE THEREOF - Microporous polyolefin membrane modified by aqueous polymer of the invention is obtained by the following steps: copolymerizing 100 parts of a water-soluble polymer, 30-500 parts of a hydrophobic monomer, 0-200 parts of a hydrophilic monomer and 1-5 parts of an initiator into polymeric colloid emulsion; adding 0-100% of an inorganic filler and 20-100% of a plasticizer based on 100% solid content of the polymeric colloid emulsion to obtain slurry; and coating the slurry on one or two surfaces of the surface modified microporous polyolefin membrane and then drying. The microporous polyolefin membrane modified by aqueous polymer has thermal shutdown effect and little thermal shrinkage, and improves the main problem of shrinkage of the microporous polyolefin membrane at high temperature. | 09-22-2011 |
20110274983 | POLYMER ELECTROLYTES INCLUDING POROUS ORGANIC PARTICLES - The present invention is directed to an electrolyte comprising a first phase including a porous organic microparticle; and a second phase including an ethylene oxide-containing polymer (i.e., an EOP); wherein the second phase is a continuous phase. The polymeric electrolyte compositions preferably also includes a lithium salt and optionally a solvent. The polymeric electrolyte composition may have a shear modulus, G′, measured at 1 rad/sec and about 30° C. and a conductivity, σ, measured at about 30° C., such that i) G′-σ is greater than about 200 (S/cm)(dynes/cm | 11-10-2011 |
20110311881 | LITHIUM SULFONATE POLYAZOLE SOLID POLYMER ELECTROLYTES IN POLYMER ELECTROLYTE LITHIUM ION BATTERIES AND SUPERCAPACITORS, AND PROCESSES OF FABRICATION - The present invention relates to novel and improved solid polymer electrolytes (or ‘gel’ polymer electrolytes) membranes for use in polymer electrolyte battery assemblies, supercapacitors and other applications. The solid polymer electrolytes (SPE) are designed specifically for lithium ion batteries and are generally comprised of a polyazole ring-substituted lithium sulfonates (PARSLS). One or more non-aqueous, PARSLS compatible solvents may be incorporated, and one or more thermally stable ionic liquids, and one or more lithium salts may also be incorporated into the SPE membranes of this invention. The SPE membranes of this invention show uniquely high lithium ion transfer values, high current carrying capacity over a wide temperature range, excellent rechargeability, and good compatibility with anode and cathode materials. These SPE membranes also have very high thermal/chemical stability, are optically clear, and can be made completely nonflammable. | 12-22-2011 |
20110318646 | DUCTILE POLYMER BINDERS AND BATTERY COMPONENTS USING THE SAME - The present invention is directed at a binder for a battery electrode comprising an ethylene oxide-containing copolymer including a first monomer of ethylene oxide (EO) and at least one additional monomer selected from an alkylene-oxide that is different from the first monomer of EO, an alkyl glycidyl ether, or a combination thereof; wherein the ethylene oxide-containing copolymer has a weight average molecular weight less than about 200,000 g/mole (e.g., from about 10,000 to about 100,000), the molar fraction of the first monomer of EO (X | 12-29-2011 |
20120077093 | LITHIUM-ION SECONDARY BATTERY, VEHICLE, ELECTRONIC DEVICE AND MANUFACTURING METHOD OF LITHIUM-ION SECONDARY BATTERY - A negative-electrode active material layer | 03-29-2012 |
20120094187 | ELECTROLYTE FOR ELECTROCHEMICAL DEVICE, METHOD FOR PREPARING THE ELECTROLYTE AND ELECTROCHEMICAL DEVICE INCLUDING THE ELECTROLYTE - Disclosed is a solid electrolyte for an electrochemical device. The solid electrolyte includes a composite consisting of: a plastic crystal matrix electrolyte doped with an ionic salt; and a network of a non-crosslinked polymer and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the non-crosslinked polymer/crosslinked polymer structure network. Particularly, the electrolyte is highly flexible. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength in terms of flexibility. | 04-19-2012 |
20120196188 | AROMATIC POLYMER ION EXCHANGE MEMBRANES, ITS COMPOSITE MEMBRANCE, AND ITS APPLICATION IN ACIDIC ELECTROLYTE FLOW BATTERY - A polymer ion exchange membrane for acidic electrolyte flow battery. The membrane is nitrogen heterocycles aromatic polymer, especially polybenzimidazole type polymer. A nitrogen heterocycles in the membrane interact with acid in the electrolyte to form donor-receptor proton transport network, so as to keep the proton transport performance of the membrane. The preparation condition for the membrane is mild, and the process is simplicity. The preparation method is suitable for mass production. The membrane is used in acidic electrolyte flow battery, especially in vanadium flow energy storage battery. The membrane has excellent mechanical stability and thermostability. In vanadium redox flow battery, the membrane has excellent proton conduct performance and excellent resistance to the permeation of vanadium ions. | 08-02-2012 |
20120251891 | Lithium-Ion Battery - A lithium-ion battery comprises a positive electrode, a negative electrode, an electrolyte system and an ion-selective conducting layer disposed between the positive electrode and the negative electrode. The ion-selective conducting layer consists of high polymers and an inorganic lithium salt having lithium-ion conductivity, or consists of the inorganic lithium salt. The inorganic lithium salt includes Li | 10-04-2012 |
20130017453 | Conformal Coating On Nanostructured Electrode Materials For Three-Dimensional Applications - A fabrication process for conformal coating of a thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional micro/nanobattery applications, compositions thereof, and devices incorporating such compositions. In embodiments, conformal coatings (such as uniform thickness of around 20-30 nanometer) of polymer Polymethylmethacralate (PMMA) electrolyte layers around individual Ni—Sn nanowires were used as anodes for Li ion battery. This configuration showed high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Such conformal nanoscale anode-electrolyte architectures were shown to be efficient Li-ion battery system. | 01-17-2013 |
20130216916 | BILAYER ELECTROLYTE FOR A LITHIUM BATTERY - The invention relates to a bilayer polymer electrolyte for a lithium battery. The electrolyte comprises the layers N and P, each composed of a solid solution of an Li salt in a polymer material, the Li salt being the same in both layers, the polymer material content being at least 60% by weight, and the lithium salt content being from 5 to 25% by weight. The polymer material of the layer P contains a solvating polymer and a nonsolvating polymer, the weight ratio of the two polymers being such that the solvating polymer forms a continuous network. The polymer material of the layer N is composed of a solvating polymer and optionally a nonsolvating polymer, the weight ratio of the two polymers being such that the solvating polymer forms a continuous network, and the nonsolvating polymer does not form a continuous network. | 08-22-2013 |
20130273435 | LAYER SYSTEM FOR ELECTROCHEMICAL CELLS - A layer system for electrochemical cells comprising at least one fibrous nonwoven fabric (A) formed by fibers of one or more organic polymers or mixtures of organic polymers (A1) wherein
| 10-17-2013 |
20130295466 | ELECTROLYTE FOR ELECTROCHEMICAL DEVICE, METHOD FOR PREPARING THE SAME AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME - A solid electrolyte for an electrochemical device includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure having a linear polymer as a side chain chemically bonded thereto. The linear polymer has a weight average molecular weight of 100 to 5,000 and one functional group. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. A method for preparing the solid electrolyte does not essentially require the use of a solvent, eliminating the need for drying. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength comparable to that of a solid electrolyte. | 11-07-2013 |
20140106236 | NOVEL POLYMER ELECTROLYTE AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME - Disclosed is a polymer electrolyte having a multilayer structure including a first polymer layer providing mechanical strength against external force and a second polymer layer to secure a conduction path for lithium ions, wherein the first polymer layer includes an organic electrolyte containing an ionic salt in an amount of 0 wt % to 60 wt % based on a weight of a polymer matrix of the first polymer layer and the second polymer layer includes an organic electrolyte containing an ionic salt in an amount of 60 wt % to 400 wt % based on a weight of a polymer matrix of the second polymer layer, and a lithium secondary battery including the same. | 04-17-2014 |
20140186719 | NASICON-Polymer Electrolyte Structure - A method is provided for forming a sodium-containing particle electrolyte structure. The method provides sodium-containing particles (e.g., NASICON), dispersed in a liquid phase polymer, to form a polymer film with sodium-containing particles distributed in the polymer film. The liquid phase polymer is a result of dissolving the polymer in a solvent or melting the polymer in an extrusion process. In one aspect, the method forms a plurality of polymer film layers, where each polymer film layer includes sodium-containing particles. For example, the plurality of polymer film layers may form a stack having a top layer and a bottom layer, where with percentage of sodium-containing particles in the polymer film layers increasing from the bottom layer to the top layer. In another aspect, the sodium-containing particles are coated with a dopant. A sodium-containing particle electrolyte structure and a battery made using the sodium-containing particle electrolyte structure are also presented. | 07-03-2014 |
20140322614 | LONG CYCLE LIFE LITHIUM SULFUR ELECTROCHEMICAL CELLS - A sulfur-based cathode for use in an electrochemical cell is disclosed. The sulfur is sequestered to the cathode to enhance cycle lifetime for the cathode and the cell. An exemplary sulfur-based cathode is coupled with a solid polymer electrolyte instead of a conventional liquid electrolyte. The dry, solid polymer electrolyte further acts as a diffusion barrier for the sulfur. Together with a sequestering matrix in the cathode, the solid polymer electrolyte prevents sulfur capacity fade that occurs in conventional liquid electrolyte based sulfur systems. The sequestering polymer in the cathode further binds the sulfur-containing active particles, preventing sulfur agglomerates from forming, while still allowing lithium ions to be transported between the anode and cathode. | 10-30-2014 |
20150010830 | GERMANIUM NANOPARTICLE/CARBON COMPOSITE ANODE MATERIAL USING NO BINDER FOR LITHIUM-POLYMER BATTERY HAVING HIGH CAPACITY AND HIGH RAPID CHARGE/DISCHARGE CHARACTERISTICS - The present invention relates to an anode active material for a lithium-polymer battery having high capacity and high rapid charge/discharge characteristics, and a lithium-polymer battery using the same, and more specifically, to: a non-carbonaceous nanoparticle/carbon composite anode material using no binder; a lithium-polymer battery having high capacity and high rapid charge/discharge characteristics using the same; and a preparation method thereof. According to the present invention, the lithium-polymer secondary battery comprises an anode active material prepared by carbonizing a composite in which polymer particles comprising non-carbonaceous nanoparticles are dispersed in a polymer resin. According to the present invention, the anode active material allows non-carbonaceous nanoparticles to be dispersed in and fixed to a carbonized body even without a binder. | 01-08-2015 |
20150017547 | ELECTROCHEMICAL DEVICES BASED ON BLOCK COPOLYMERS - The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that has high ionic conductivity and is mechanically robust. An exemplary material can be characterized by a copolymer that includes at least one structural block, such as a vinyl polymer, and at least one ionically conductive block with a siloxane backbone. In various embodiments, the electrolyte can be a diblock copolymer or a triblock copolymer. Many uses are contemplated for the solid polymer electrolyte materials. For example, the novel electrolyte material can be used in Li-based batteries to enable higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors. | 01-15-2015 |
20150044574 | POLYMER ELECTROLYTE MEMBRANES FOR RECHARGEABLE BATTERIES - An electrolyte membrane for use in a rechargeable battery includes a polymer layer and platelet particles, where the polymer layer is reinforced with a fiber mat, and the polymer layer retains an electrolyte. A rechargeable battery uses the membrane in a position between a positive electrode and negative electrode where the membrane serves as an ion conductor for the battery. | 02-12-2015 |
20150140441 | SOLID POLYMER ELECTROLYTE COMPOSITION FOR LITHIUM ION BATTERY - A composition suitable as a solid polymer electrolyte for a lithium ion battery comprises a mixture of polyoctahedral silsesquioxane-phenyl | 05-21-2015 |
20160028112 | GUM-LIKE ELECTROLYTES AND METHODS OF MAKING THE SAME - A gum like electrolyte composition and methods for making the composition are disclosed herein. The gum-like electrolyte composition may include a mixture of at least one wax particle, at least one electrolyte, and a polymer matrix comprising at least one polymer, wherein the wax particle and the electrolyte are dispersed in the polymer matrix, and wherein mixture is a malleable material. | 01-28-2016 |
20160028114 | MULTI-PHASE ELECTROLYTE LITHIUM BATTERIES - Electrode assemblies for use in electrochemical cells are provided. The negative electrode assembly includes negative electrode active material and an electrolyte chosen specifically for its useful properties in the negative electrode. Such properties include reductive stability and ability to accommodate expansion and contraction of the negative electrode active material. Similarly, the positive electrode assembly includes positive electrode active material and an electrolyte chosen specifically for its useful properties in the positive electrode. These properties include oxidative stability and the ability to prevent dissolution of transition metals used in the positive electrode active material. A third electrolyte can be used as separator between the negative electrode and the positive electrode. A cell is constructed with a cathode that includes a fluorinated electrolyte which does not penetrate into the solid-state polymer electrolyte separator between it and the lithium-based anode. Such an assembly improves charge transport properties without compromising the strength and durability of the separator. | 01-28-2016 |
20160049690 | HIGH-IONIC CONDUCTIVITY ELECTROLYTE COMPOSITIONS COMPRISING SEMI-INTERPENETRATING POLYMER NETWORKS AND THEIR COMPOSITES - The invention relates to high-ionic conductivity electrolyte compositions. The invention particularly relates to high-ionic conductivity electrolyte compositions of semi-interpenetrating polymer networks and their nanocomposites as quasi-solid/solid electrolyte matrix for energy generation, storage and delivery devices, in particular for hybrid solar cells, rechargeable batteries, capacitors, electrochemical systems and flexible devices. The binary or ternary component semi-interpenetrating polymer network electrolyte composition comprises: a) a polymer network with polyether backbone (component I); b) a low molecular weight linear, branched, hyper-branched polymer or any binary combination of such polymers with preferably non-reactive end groups (component-ll and/or component-Ill, for formation of ternary semi-IPN system); c) an electrolyte salt and/or a redox pair, and optionally d) a bare or surface modified nanostructured material to form a nanocomposite. | 02-18-2016 |
20160126519 | CROSS-LINKED COMPOUND PARTICLE AND SECONDARY BATTERY INCLUDING THE SAME - Disclosed are a cross-linked compound particle and a secondary battery including the same. More particularly, a compound particle which includes a monomer and a polymerization initiator, as a core and a film including a material disappeared at predetermined temperature as a shell is provided. | 05-05-2016 |