Class / Patent application number | Description | Number of patent applications / Date published |
429150000 | With integral switch means | 12 |
20080274400 | BATTERY CELL HAVING ENERGY CONTROL DEVICE - A battery assembly includes a plurality of battery cells. Each cell includes a plurality of first electrodes and second electrodes. First and second insulators extend over the first and second electrodes. An envelope or shell extends over the first and second insulators thereby encapsulating the first and second insulators. A lithium energy control electronics device (the LEC) is disposed, i.e. integrated inside the shell of each cell of the battery assembly. Each cell of the battery assembly is electronically and operatively communicated with one another through the respective LEC disposed inside each cell. | 11-06-2008 |
20090123829 | BATTERY PACK AND ELECTRONIC DEVICE USING THE SAME - A high-capacity battery pack attachable to a small-sized electronic device in which a lithium-polymer cell and a lithium-ion cell are physically coupled and to be electrically connected in parallel, and an electronic device using the battery pack maximize a battery mounting space while providing a high-capacity battery pack useful for the small-sized electronic device. The battery pack is arranged such that the lithium-polymer cell having a thin thickness in a large cross-sectional area and a lithium-ion cell having a thick thickness in a small cross-sectional area are appropriately arranged to maximize the space of the battery accommodating portion. | 05-14-2009 |
20090291361 | Wearable power supply for soldiers - A four-cell stick ( | 11-26-2009 |
20100261048 | DYNAMICALLY RECONFIGURABLE FRAMEWORK FOR A LARGE-SCALE BATTERY SYSTEM - A dynamically reconfigurable framework is provided for a large-scale battery system. The framework is comprised of a plurality of battery circuits arranged adjacent to each other to form a battery-cell array that is coupled to an application load. A given battery circuit includes: a battery cell with an input terminal and an output terminal; a first switch connected between the load and an input terminal of the battery cell; a second switch is connected between an input terminal of the battery cell and an output terminal of a battery cell in an immediately adjacent battery circuit; and a third switch connected between the output terminal of the battery cell and the output terminal of the battery cell in the adjacent battery circuit. The battery-cell array also includes a local controller that selectively controls the switches in the plurality of battery circuits. | 10-14-2010 |
20130171503 | CAR STARTER BATTERY - A car starter battery includes a housing accommodating therein multiple sets of lithium cells, a carrying-handle located on the top side of the top cover of the housing, two conducting screw holes located on the top cover at two opposite sides relative to the carrying-handle and electrically connected with the lithium polymer cells for the connection of a jumper cable with conducting screw terminals, and a charging-discharging copper screw detachably threaded into each of the two conducting screw holes for the connection of a jumper cable with conducting terminal clamps. | 07-04-2013 |
20130177799 | ELECTROLYTIC SOLUTION, SECONDARY BATTERY, BATTERY PACK, ELECTRIC VEHICLE, ELECTRIC POWER STORAGE SYSTEM, ELECTRIC POWER TOOL, AND ELECTRONIC APPARATUS - A secondary battery includes: a cathode; an anode; and an electrolytic solution. The electrolytic solution includes an unsaturated cyclic ester carbonate and one or more selected from a group configured of aromatic compounds, dinitrile compounds, sulfinyl compounds, and lithium salts. | 07-11-2013 |
20130224563 | SECONDARY BATTERY, BATTERY PACK, ELECTRIC VEHICLE, ELECTRIC POWER STORAGE SYSTEM, ELECTRIC POWER TOOL, AND ELECTRONIC APPARATUS - A secondary battery includes: a cathode; an anode; and an electrolytic solution. The anode includes a carbon material and styrene-butadiene rubber. The electrolytic solution includes an unsaturated cyclic ester carbonate represented by the following Formula (1). | 08-29-2013 |
20140127549 | BATTERY PACK OF IMPROVED SAFETY - Disclosed herein is a battery pack configured such that battery modules, each of which includes a plurality of battery cells or unit modules connected to each other in series, are connected to each other in series in a state in which the battery modules are in tight contact with each other or stacked adjacent to each other, the battery pack including a fuse connected in series in an electrical connection circuit between the battery modules and a circuit breaker mounted at an outside of at least one of the battery modules to perform electric conduction when the battery cells swell, the circuit breaker being electrically connected to the electrical connection circuit to break the fuse when electric conduction is performed due to swelling of the battery cells. | 05-08-2014 |
20140154555 | SECONDARY BATTERY-USE ACTIVE MATERIAL, SECONDARY BATTERY-USE ELECTRODE, SECONDARY BATTERY, BATTERY PACK, ELECTRIC VEHICLE, ELECTRIC POWER STORAGE SYSTEM, ELECTRIC POWER TOOL, AND ELECTRONIC APPARATUS - A secondary battery includes: a cathode; an anode; and an electrolytic solution. The cathode includes a lithium-containing compound having an average composition represented by a following Formula (1), the lithium-containing compound includes a central section and a surface section, a molar ratio b1 of manganese (Mn) in the surface section is larger than a molar ratio b2 of Mn in the central section, a molar ratio 1+a1 of lithium (Li) in the surface section is smaller than a molar ratio 1+a2 of Li in the central section, and a ratio 1+a1/1+a2 between the molar ratio 1+a1 of Li in the surface section and the molar ratio 1+a2 of Li in the central section satisfies 0.5<1+a1/1+a2<1, | 06-05-2014 |
20150104691 | SECONDARY BATTERY, BATTERY PACK, ELECTRIC VEHICLE, ELECTRIC POWER STORAGE SYSTEM, ELECTRIC POWER TOOL, AND ELECTRONIC APPARATUS - A secondary battery includes a cathode, an anode, and an electrolyte layer including non-aqueous electrolytic solution and a polymer compound. The polymer compound includes a graft copolymer. The graft copolymer includes a block copolymer as a main chain, and includes one or both of a homopolymer and a copolymer as one or more side chains. The block copolymer includes, as polymerization units, vinylidene fluoride and hexafluoropropylene. The homopolymer includes, as a polymerization unit, one selected from the group consisting of vinylidene fluoride, hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene, acrylic acid, and methacrylic acid. The copolymer includes, as polymerization units, two or more selected from the group consisting of vinylidene fluoride, hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene, acrylic acid, and methacrylic acid. | 04-16-2015 |
20150104692 | SECONDARY BATTERY, BATTERY PACK, ELECTRIC VEHICLE, ELECTRIC POWER STORAGE SYSTEM, ELECTRIC POWER TOOL, AND ELECTRONIC APPARATUS - A secondary battery includes: a cathode; an anode; and an electrolyte layer containing a nonaqueous electrolytic solution and a polymer compound, wherein the polymer compound contains a block copolymer, and the block copolymer contains vinylidene fluoride, hexafluoro propylene, and one or more of monomethyl maleate, trifluoroethylene, and chlorotrifluoroethylene as polymerization units. | 04-16-2015 |
20150295278 | POWER STORAGE ELEMENT, MANUFACTURING METHOD THEREOF, AND POWER STORAGE DEVICE - Disclosed is a power storage element including a positive electrode current collector layer and a negative electrode current collector layer which are arranged on the same plane and can be formed through a simple process. The power storage element further includes a positive electrode active material layer on the positive electrode current collector layer; a negative electrode active material layer on the negative electrode current collector layer; and a solid electrolyte layer in contact with at least the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer and the negative electrode active material layer are formed by oxidation treatment. | 10-15-2015 |