Class / Patent application number | Description | Number of patent applications / Date published |
429143000 | Ribs or projections attached to sheet material | 17 |
20100323230 | SEPARATOR FOR PROGRESSING UNITED FORCE TO ELECTRODE AND ELECTROCHEMICAL CONTAINING THE SAME - A separator includes a porous substrate having a plurality of pores; a porous coating layer formed on at least one surface of the porous substrate and made of a mixture of a plurality of inorganic particles and a binder polymer; and a dot pattern layer formed on a surface of the porous coating layer and having a plurality of dots made of polymer and arranged at predetermined intervals. The separator may control short-circuit between positive and negative electrodes though an electrochemical device is overheated. Also, a united force to an electrode is enhanced due to the polymer dot pattern layer, thereby preventing the electrode and the separator from being separated. Accordingly, inorganic particles of the porous coating layer formed on the porous substrate are not separated, thereby improving stability of an electrochemical device. | 12-23-2010 |
20110003190 | BATTERY SEPARATOR FOR A STORAGE BATTERY - A battery separator for a lead acid (storage) battery is made from a thermoplastic sheet material. The sheet material has a central region flanked by peripheral regions. The central region includes a plurality of longitudinally extending ribs that are integrally formed from the sheet material. The peripheral regions are free of ribs and may include a densified structure. Also disclosed are a method of producing the foregoing separator, an envelope separator made from the sheet material, and a method of making the envelope separator. | 01-06-2011 |
20110014511 | METHOD FOR CONVERTING A SEPARATOR PROCESSING MACHINE - The invention relates to a method for converting a separator processing machine for processing separators for a lead accumulator, comprising the steps of ending a supply of a first separator having a first separator width to the separator processing machine and supplying a second separator having a second separator width that differs from the first separator width to the separator processing machine. According to the invention, the separators comprise a base film body extending along a center line and a plurality of primary ribs, which are raised above the base film body along the center line by a primary rib height and are disposed mirror-symmetrically with respect to the center line, wherein the primary ribs of the second separator with respect to the center line are disposed in the same locations as the primary ribs of the first separator. | 01-20-2011 |
20110091761 | BATTERY SEPARATORS WITH CROSS RIBS AND RELATED METHODS - A separator for a lead acid battery is a porous membrane having a positive electrode face and a negative electrode face. A plurality of longitudinally extending ribs, a plurality of protrusions or a nonwoven material may be disposed upon the positive electrode face. A plurality of transversely extending ribs are disposed upon the negative electrode face. The transverse ribs disposed upon the negative electrode face are preferably juxtaposed to a negative electrode of the lead acid battery, when the separator is placed within that battery. | 04-21-2011 |
20110195293 | METHODS FOR PRODUCING TEXTURED ELECTRODE BASED ENERGY STORAGE DEVICE - This method enables the use of nanowire or nano-textured forms of Polyaniline and other conductive polymers in energy storage components. The delicate nature of these very high surface area materials are preserved during the continuous electrochemical synthesis, drying, solvent application and physical assembly. The invention also relates to a negative electrode that is comprised of etched, lithiated aluminum that is safer and lighter weight than conventional carbon based lithium-ion negative electrodes. The invention provides for improved methods for making negative and positive electrodes and for energy storage devices containing them. The invention provides sufficient stability in organic solvent and electrolyte solutions, where the prior art processes commonly fail. The invention further provides stability during repetitive charge and discharge. The invention also provides for novel microstructure protecting support membranes to be used in an energy storage device. | 08-11-2011 |
20120070713 | SEPARATORS, BATTERIES, SYSTEMS, AND METHODS FOR IDLE START STOP VEHICLES - In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or high performance ISS lead acid battery separators, such as improved ISS flooded lead acid battery separators, ISS batteries including such separators, methods of production, and/or methods of use. The preferred ISS separator may include negative cross ribs and/or PIMS minerals. In accordance with more particular embodiments or examples, a PIMS mineral (preferably fish meal, a bio-mineral) is provided as at least a partial substitution for the silica filler component in a silica filled lead acid battery separator (preferably a polyethylene/silica separator formulation). In accordance with at least selected embodiments, the present invention is directed to new or improved batteries, separators, components, and/or compositions having heavy metal removal capabilities and/or methods of manufacture and/or methods of use thereof. | 03-22-2012 |
20120100410 | FUEL CELL SEPARATOR - The present invention provides a fuel cell separator, in which a vortex generating structure is formed on the surface of a channel of the separator to induce a vortex of fluid (i.e., hydrogen and air) flowing through the channel, thus facilitating the supply of reactant gases and the removal of water droplets from a gas diffusion layer (GDL). | 04-26-2012 |
20120202102 | HEAT-RESISTANT MICROPOROUS FILM AND BATTERY SEPARATOR - A heat-resistant microporous film and a battery separator are provided, which each include a substrate formed by using a porous film and include a heat-resistant layer formed on at least one surface of the substrate so as to contain a heat-resistant resin and heat-resistant particles, and in which a protrusion is formed on a surface of the heat-resistant layer in number not exceeding 60 per surface area of 0.0418 mm | 08-09-2012 |
20130059192 | SEPARATOR AND NONAQUEOUS ELECTROLYTE BATTERY - A separator is provided. The separator includes a base layer and a surface layer, wherein the surface layer is on at least one side of the base layer, and wherein the surface layer is structured so as to collapse at time of charging to prevent damage to a negative electrode due to expansion thereof. A battery including the separator is also provided. An electric device, an electric vehicle, and an electrical storage device including the battery are further provided. | 03-07-2013 |
20130084483 | SEPARATOR AND ELECTROCHEMICAL DEVICE COMPRISING THE SAME - Disclosed is a separator. The separator includes a porous substrate, and a porous coating layer formed on at least one surface of the porous substrate and including a mixture of inorganic particles and a binder polymer. A continuous or discontinuous patterned layer is formed on the surface of the porous coating layer to allow an electrolyte solution to permeate therethrough. The continuous or discontinuous patterned layer may be formed with continuous grooves to allow an electrolyte solution to permeate therethrough. Due to this structure, the wettability of the separator with an electrolyte solution is improved, shortening the time needed to impregnate the electrolyte solution into the separator. | 04-04-2013 |
20130122346 | BATTERY SPACE, BATTERY PROTECTING DEVICE AND POWER BATTERY COMPRISING THE SAME - A battery spacer is provided. The battery spacer ( | 05-16-2013 |
20130344373 | EMBOSSED SEPARATORS, BATTERIES AND METHODS - An improved, new, modified, or more robust embossed battery separator for a storage battery, a method for its production, an envelope embossed separator, batteries including the embossed separators and/or envelopes, and/or related methods for the production and/or use of the embossed separators, embossed envelopes, and/or batteries including such embossed separators and/or envelopes. | 12-26-2013 |
20140057154 | BATTERY SEPARATOR WITH GEL IMPREGNATED NONWOVEN FOR LEAD ACID BATTERY - In one embodiment, battery separator for a lead acid battery includes a gel impregnated nonwoven. The nonwoven includes an acid dissolvable fiber and a non-acid dissolvable fiber. The gel may have a basis weight in a range of about 20-160% of the nonwoven's basis weight. In another embodiment, battery separator for a lead acid battery includes a microporous membrane with the gel impregnated nonwoven adhered thereto. | 02-27-2014 |
20160013461 | POLYOLEFIN POROUS MEMBRANE, BATTERY SEPARATOR OBTAINED USING SAME, AND METHOD OF PRODUCING SAME | 01-14-2016 |
20160043374 | SECONDARY BATTERY - A secondary battery comprising an electrode assembly comprising a first electrode plate, a second electrode plate, and a separator between the first electrode plate and the second electrode plate, a protection film coupled to one end of the electrode assembly, a can accommodating the electrode assembly, and a cap plate coupled to the can, wherein the separator protrudes more toward the protection film than the first electrode plate and the second electrode plate at the one end of the electrode assembly, and wherein the protection film is thermally bonded to an end portion of the separator. | 02-11-2016 |
20160204408 | BATTERY SEPARATOR WITH DIELECTRIC COATING | 07-14-2016 |
20160380262 | METHODS FOR PRODUCING TEXTURED ELECTRODE BASED ENERGY STORAGE DEVICE - This method enables the use of nanowire or nano-textured forms of Polyaniline and other conductive polymers in energy storage components. The delicate nature of these very high surface area materials are preserved during the continuous electrochemical synthesis, drying, solvent application and physical assembly. The invention also relates to a negative electrode that is comprised of etched, lithiated aluminum that is safer and lighter weight than conventional carbon based lithium-ion negative electrodes. The invention provides for improved methods for making negative and positive electrodes and for energy storage devices containing them. The invention provides sufficient stability in organic solvent and electrolyte solutions, where the prior art processes commonly fail. The invention further provides stability during repetitive charge and discharge. The invention also provides for novel microstructure protecting support membranes to be used in an energy storage device. | 12-29-2016 |