Class / Patent application number | Description | Number of patent applications / Date published |
429127000 | Tape or flexible-type cell including tape fuel cells or subcombination thereof | 66 |
20080199768 | NONAQUEOUS ELECTROLYTE SECONDARY BATTERY - In a nonaqueous electrolyte secondary battery in which an electrode plate group including a positive electrode plate and a negative electrode plate which have a positive electrode mixture layer formed on a positive electrode current collector to contain a positive electrode active material and a negative electrode mixture layer formed on a negative electrode current collector to contain a negative electrode active material, respectively, and are spirally wound or stacked with a separator interposed therebetween is encapsulated in a battery exterior packaging body with an electrolyte, the battery exterior packaging body includes a gas releasing valve for releasing gas in the battery exterior packaging body to the outside when a gas pressure in the battery exterior packaging body reaches a working pressure and is formed to be deformable where the gas pressure in the battery exterior packaging body is lower than the working pressure of the gas releasing valve. | 08-21-2008 |
20090042096 | CONFORMABLE BATTERY - A conformable battery wherein the outer casing has an upper face plate, a lower face plate, and at least one perimetric wall, and an interior of the battery comprising a grid of walls extending from the upper face plate to the lower face plate and connecting to the at least one perimetric wall, thereby dividing the interior of the battery into at least two compartments and increasing the battery's structural stiffness and ability to sustain increased internal pressure. Each compartment contains an electrochemically active plate stack, and a network of electrical conductors provides electrical connection between the plate stacks in each of the compartment. The battery may further comprise a reservoir containing an acid additive which, when released into each of the compartments, shifts the battery from a low power mode into a high power mode. | 02-12-2009 |
20090136834 | Method of Constructing an Electrode Assembly - An electrode assembly | 05-28-2009 |
20090208831 | DEVICE HAVING ELECTRODE GROUP - There is provided a device with which an optional voltage and an optional capacity may be obtained in one device. A device wherein a plurality of electrode groups each comprising a positive electrode sheet having an electrode tab, a negative electrode sheet having an electrode tab, and a separator disposed so as to insulate the positive electrode sheet from the negative electrode sheet, are included in a single vessel. The device being used as a storage device, and the device being used as a nonaqueous electrolytic solution secondary battery. | 08-20-2009 |
20090311587 | Flexible Energy Storage Devices - A flexible energy storage device comprising a flexible housing; an electrolyte contained within the housing; an anode and cathode comprise a current collector and anode/cathode material supported on the current collector. The current collector comprising a fabric substrate ( | 12-17-2009 |
20100003587 | FOLDING SECONDARY BATTERY - A folding secondary battery includes a folded body mounted in a housing filled with an electrolyte solution. A positive electrode, two negative electrodes and two isolation films respective sandwiched between the positive electrode and one of the negative electrodes are laminated and folded to form the folded body with a zigzag shape. Films of positive active material are spacedly arranged on opposite sides of the positive electrode in a pair manner. On one side of the negative electrode facing the positive electrode, films of negative active material are spacedly arranged corresponding to the films of positive active material. The positive electrode and negative electrode are folded at a location between two of the films of positive active material and two of the films of negative active material respectively, thereby preventing detachment of the films due to fold and a deformation phenomenon under charging. | 01-07-2010 |
20110045337 | VACUUM-SEALING-TYPE FLEXIBLE-FILM PRIMARY BATTERY AND METHOD OF MANUFACTURING THE SAME - Provided are a vacuum-sealing-type flexible-film primary battery and a method of manufacturing the same. The primary battery includes a battery assembly comprising a positive electrode plate including a positive electrode collector having a first conductive carbon layer disposed on a surface-treated inner surface of a first pouch and a positive electrode layer disposed on the first conductive carbon layer of the positive electrode collector, a negative electrode plate including a negative electrode collector having a second conductive carbon layer disposed on a surface-treated inner surface of a second pouch and a negative electrode layer disposed on the second conductive carbon layer of the negative electrode collector, and an adhesion/post-injection polymer electrolyte layer interposed between the positive electrode plate and the negative electrode plate, wherein the battery assembly is completely sealed. The flexible-film primary battery may employ the pouch as a collector film to improve flexibility. Also, the flexible-film primary battery may be completely sealed using the pouch to improve a retention period and cell performance. Furthermore, the flexible-film primary battery may be manufactured using a screen printing technique, thereby facilitating a roll-to-roll sequential process. | 02-24-2011 |
20110189528 | THIN FILM BATTERY - The present invention concerns a flat battery comprising a package formed by a cathode, an anode, and a separator layer sandwiched between the cathode and the anode, a sealing frame extending circumferentially around said package, a first current collector contacting the anode, and a second current collector contacting the cathode. The first and second current collectors each partly cover the sealing frame in a zone being adjacent to the package. According to the invention, the battery further comprises a first polymeric jacket layer being arranged on the first current collector and a second polymeric jacket layer being arranged on the second current collector, said first and second polymeric jacket layers extending circumferentially beyond the current collectors and beyond the sealing frame and being sealed together to form an outer jacket for the battery. Furthermore, the present invention also concerns a method to produce such a battery. | 08-04-2011 |
20110287296 | THIN FILM SOLID STATE LITHIUM ION SECONDARY BATTERY AND METHOD OF MANUFACTURING THE SAME - In one example embodiment, a thin film solid state lithium ion secondary battery is charged and discharged in the air. The thin film solid state lithium ion secondary battery has an electric insulating substrate formed from an organic resin, an insulating film made of an inorganic material and is formed on the substrate face, a cathode-side current collector film, a cathode active material film, a solid electrolyte film, an anode active material film, and an anode-side current collector film. In the thin film solid state lithium ion secondary battery, the cathode-side current collector film and/or the anode-side current collector film is formed on the foregoing insulating film face. The area of the foregoing insulating film is larger than the area of the cathode-side current collector film or the anode-side current collector film or the total area of the cathode-side current collector film and the anode-side current collector film. | 11-24-2011 |
20120058378 | POUCH-TYPE FLEXIBLE FILM BATTERY AND METHOD OF MANUFACTURING THE SAME - Provided are a pouch-type flexible film battery and a method of manufacturing the same. The film battery includes a cathode structure including a cathode pouch, a cathode conductive carbon layer, and a cathode layer, an anode structure including an anode pouch, an anode conductive carbon layer, and an anode layer, and a polymer electrolyte layer between the cathode and anode structures. The polymer electrode layer may be a gel-type electrolyte including a cellulose-based polymer. | 03-08-2012 |
20120100408 | CABLE-TYPE SECONDARY BATTERY AND METHOD FOR MANUFACTURING THE SAME - A cable-type secondary battery includes an electrode assembly, which has a first polarity current collector having a long and thin shape, at least two first polarity electrode active material layers formed on the first polarity current collector to be spaced apart in the longitudinal direction, an electrolyte layer filled to surround at least two first polarity electrode active material layers, at least two second polarity electrode active material layers formed on the electrolyte layer to be spaced apart at positions corresponding to the first polarity electrode active material layers, and a second polarity current collector configured to surround the outer surfaces of the second polarity electrode active material layers, the electrode assembly being continuously bent into a substantially “S” shape by a space between the first polarity electrode active material layers; and a cover member configured to surround the electrode assembly which is continuously bent into a substantially “S” shape. | 04-26-2012 |
20120100409 | CABLE-TYPE SECONDARY BATTERY AND METHOD FOR MANUFACTURING THE SAME - A method for manufacturing a cable-type secondary battery includes: preparing a first polarity current collector having a long and thin shape; forming at least two first polarity electrode active material layers on the first polarity current collector to be spaced apart from each other in the longitudinal direction; forming an electrolyte layer to surround at least two first polarity electrode active material layers; forming at least two second polarity electrode active material layers on the electrolyte layer to be spaced apart from each other at positions corresponding to the first polarity electrode active material layers; forming an electrode assembly by surrounding the second polarity electrode active material layers with a second polarity current collector; surrounding the electrode assembly with a cover member; and bending the electrode assembly and the cover member into a substantially “S” shape with respect to a space between the first polarity electrode active material layers. | 04-26-2012 |
20120121963 | FLEXIBLE BATTERY AND FLEXIBLE ELECTRONIC DEVICE INCLUDING THE SAME - A flexible battery and a flexible electronic device including the flexible battery as a power source. The flexible battery includes a cell stack comprising a plurality of unit cells, and an external casing sealing the cell stack, wherein each of the unit cells comprises a negative electrode, a positive electrode, an electrolyte layer disposed between the negative electrode and the positive electrode, and a first polymer film at least partially surrounding the negative electrode, the positive electrode, and the electrolyte layer. | 05-17-2012 |
20120202101 | THIN FLEXIBLE BATTERY - Disclosed is a thin flexible battery including: an electrode group which includes a positive electrode including a sheet-like positive electrode current collector with a positive electrode active material layer adhering to one surface thereof, a negative electrode including a sheet-like negative electrode current collector with a negative electrode active material layer adhering to one surface thereof, and an electrolyte layer interposed between the positive electrode active material layer and a lithium metal or lithium alloy; and a housing accommodating the electrode group. The housing includes a barrier layer, and resin layers formed on both surfaces thereof. The other surface of the positive electrode current collector and the other surface of the negative electrode current collector are in contact with the resin layer at an inner side of the housing, and have a surface roughness Rz | 08-09-2012 |
20120244408 | WEARABLE BATTERY SET - A wearable battery set is provided. The wearable battery set comprises a buckle and a flexible battery unit. The buckle has a control circuit. The flexible battery is disposed on the side of the buckle and connects to the control circuit electrically. The flexible battery unit is adapted to be bent into a ring, and the buckle is configured to keep the flexible battery unit in the ring form so that the wearable battery set can be worn by a user. The control circuit of the buckle is configured to control the output power of the flexible battery unit so that the wearable battery set is able to provide the output power to an electronic device via the control circuit of the buckle. | 09-27-2012 |
20120251867 | THIN FILM BATTERY WITH ELECTRICAL CONNECTOR CONNECTING BATTERY CELLS - A thin film battery comprises a substrate having a surface, and a plurality of battery cells on the substrate surface. Each battery cell comprises an electrolyte having opposing surfaces, and a plurality of conductors in electrical contact with at least one of the opposing surfaces of the electrolyte, the plurality of conductors including a first conductor in electrical contact with a surface of the electrolyte and a second conductor in electrical contact with the opposing surface of the electrolyte. At least one electrical connector strip connects a conductor of a first battery cell to a conductor of a second battery cell to electrically couple the first and second battery cells to one another. | 10-04-2012 |
20120276434 | HIGHLY FLEXIBLE PRINTED ALKALINE BATTERIES BASED ON MESH EMBEDDED ELECTRODES - A flexible battery and a method to form the flexible battery include forming an anode by embedding an anode type electro-active material within a mesh material and associating an anode current collector with the anode. Similarly a cathode is formed by embedding a cathode type electro-active material within a mesh material and a cathode current collector is associated with the cathode. An electrolyte is located between the anode and cathode, and the arrangement is sealed. | 11-01-2012 |
20130089769 | THIN FLEXIBLE ELECTROCHEMICAL ENERGY CELL - An electrochemical energy cell has a galvanic cell including an anode electrode unit, a cathode electrode unit, an electrolyte body between the anode and cathode electrode units and contacting both the anode and cathode electrode units, and a separator layer including the electrolyte body and placed within the cell to contact both the anode and cathode electrode units to bring the anode and cathode electrode units in contact with the electrolyte body. The cathode electrode unit includes a cathode material including a powder mixture of a powder of hydrated ruthenium oxide and one or more additives. The anode electrode unit includes a structure formed of an oxidizable metal, and the separator layer includes a material that is porous to ions in liquid and is electrically non-conductive. A flexible electrochemical cell can be configured for a reduction-oxidation reaction to generate power at a surface of the electrode unit(s). | 04-11-2013 |
20130101884 | FLEXIBLE BATTERY AND METHOD FOR PRODUCING THE SAME - Disclosed is a flexible battery including a sheet-like electrode group, an electrolyte, and a housing with flexibility enclosing the electrode group and electrolyte. The housing includes a film material folded into two in which the electrode group is inserted. The film material has two facing portions respectively facing two principal surfaces of the electrode group, a fold line which is between the two facing portions and along which the film material is folded, and two bonding margins respectively set around the two facing portions. The two bonding margins are bonded to each other into a bonded portion. At least the two facing portions of the film material are formed in a corrugated shape having a plurality of ridge and valley lines arranged in parallel to each other. The ridge lines in one of the two facing portions are overlapped with the valley lines in the other. The fold line is parallel to the ridge and valley lines. | 04-25-2013 |
20130108911 | FLEXIBLE ENVELOPE TYPE BATTERY AND ELECTRICALLY CONDUCTIBLE SEALING STRUCTURE THEREOF AND ASSEMBLING METHOD THEREOF | 05-02-2013 |
20130115507 | THIN FILM LITHIUM-ION BATTERY - The present invention is directed to a thin film lithium-ion battery having at least a laminate structure therein. The laminate structure includes a bottom current collector layer, an anode consisting of a superlattice layer and a silicon based layer, an electrolyte and separator, a cathode and a top current collector layer sequentially stacked together. The electrolyte and separator of the laminate structure contains lithium ions. | 05-09-2013 |
20130149585 | Mixture, a Slurry for an Electrode, a Battery Electrode, a Battery and Associated Methods - A mixture including a room temperature ionic liquid; and a reversible source/sink of lithium ions. The mixture may be used as a lithium-ion battery electrode slurry enabling flexible lithium-ion batteries. | 06-13-2013 |
20130171496 | THIN FILM LITHIUM ION BATTERY - A thin film lithium ion battery includes a cathode electrode, an anode electrode, and a solid electrolyte layer. The solid electrolyte layer is sandwiched between the cathode electrode and the anode electrode. At least one of the cathode electrode and the anode electrode includes a current collector. The current collector is a carbon nanotube layer consisting of a plurality of carbon nanotubes. | 07-04-2013 |
20130177798 | THIN BATTERY AND BATTERY DEVICE - Disclosed is a thin battery including an electrode assembly in sheet form and a housing for accommodating the electrode assembly. The electrode assembly includes a positive electrode, a negative electrode, and an electrolyte layer interposed therebetween. A lubricating material with a lubricating effect is interposed between an inner surface of the housing and the electrode assembly, and is, for example, an inert gas. The inert gas includes, for example, at least one of nitrogen and argon. It is preferable that the lubricating material is present, at least, between end surfaces of the electrode assembly on both sides in the thickness direction thereof and two main flat surfaces of the inner surface of the housing which face the end surfaces, respectively. | 07-11-2013 |
20130224551 | Apparatus and Associated Methods - An apparatus including at least one substrate, the at least one substrate including first and second electrodes and configured to form a sealed chamber with the first and second electrodes contained therein and facing one another, the sealed chamber including electrolyte in the space between the first and second electrodes, wherein the at least one substrate is configured to undergo reversible stretching whilst still forming the sealed chamber containing the electrolyte. | 08-29-2013 |
20130236764 | RECHARGEABLE LITHIUM BATTERY FOR WIDE TEMPERATURE OPERATION - Presented herein is a rechargeable lithium battery that includes a cathode, a liquid electrolyte, a solid electrolyte, and an anode. The anode is at least partially coated or plated with the solid electrolyte. The cathode may be porous and infiltrated by the liquid electrolyte. The cathode may also include a binder having a solid graft copolymer electrolyte (GCE). In certain embodiments, the liquid electrolyte is a gel that includes a PIL and a GCE. The battery achieves a high energy density and operates safely over a wide range of temperatures. | 09-12-2013 |
20130252065 | THIN BATTERY - Disclosed is a thin battery including: an electrode assembly in sheet form including at least one electrode structure, the electrode structure being a laminate including a positive electrode, a negative electrode, and an electrolyte layer interposed therebetween; and a film-made housing for hermetically accommodating the electrode assembly, the electrode assembly having a bending elastic modulus of 300 MPa or less; the film-made housing being formed from a laminate film including a first resin film, and a gas barrier layer and a second resin film laminated in this order on one surface of the first resin film; the gas barrier layer including a metal material or an inorganic material; the gas barrier layer having an average thickness of 30 μm or less; and the electrode assembly and the film-made housing, in total, having a thickness of 1 mm or less. | 09-26-2013 |
20130260205 | FLEXIBLE SECONDARY BATTERY - A flexible battery a first electrode layer, a first current collector layer disposed on the first electrode layer, where a plurality of through-holes is defined in the first current collector layer, a separator disposed on the first current collector layer, a second current collector layer disposed on the separator, where a plurality of through-holes is defined in the second current collector layer, and a second electrode layer disposed on the second current collector layer. | 10-03-2013 |
20130273405 | POWER STORAGE DEVICE AND METHOD FOR MANUFACTURING THE SAME - To provide a flexible, highly reliable, and sheet-like power storage device. The power storage device including a flexible substrate; a positive electrode lead and a negative electrode lead over the flexible substrate; and a plurality of power storage elements over the flexible substrate. The plurality of power storage elements each includes a stack body including a sheet-like positive electrode; a sheet-like negative electrode; and an electrolyte therebetween in an exterior body. An edge portion of the sheet-like positive electrode which extends to the outside of the exterior body is electrically connected to the positive electrode lead through a positive electrode tab provided for the exterior body. An edge portion of the sheet-like negative electrode which extends to the outside of the exterior body is electrically connected to the negative electrode lead through a negative electrode tab provided for the exterior body. | 10-17-2013 |
20130280580 | METHOD FOR PROVIDING A STRETCHABLE POWER SOURCE AND DEVICE - Disclosed in this specification is a method for providing a stretchable power source and corresponding device. The device has at least two stretchable fabrics with silver-coated fibers. Each fabric has cathodic and anodic materials, respectively, deposited between the fibers. The fibers are sealed with an elastomeric pouch having an electrolyte. The stretchable power source has substantially no change in discharge capacity when stretched from 0% strain to 100% strain. | 10-24-2013 |
20130280581 | PINHOLE-FREE SOLID STATE ELECTROLYTES WITH HIGH IONIC CONDUCTIVITY - The present invention relates to vacuum-deposited solid state electrolyte layers with high ionic conductivity in electrochemical devices, and methods and tools for fabricating said electrolyte layers. An electrochemical device may comprise solid state electrolytes with incorporated thin layers and/or particles of transition metal oxides, silicon, silicon oxide, or other suitable materials that will induce an increase in ionic conductivity of the electrolyte stack (for example, materials with which lithium is able to intercalate), or mixtures thereof. An improvement in ionic conductivity of the solid state electrolyte is expected which is proportional to the number of incorporated layers or a function of the distribution uniformity and density of the particles within the electrolyte. Embodiments of the present invention are applicable to solid state electrolytes in a broad range of electrochemical devices including thin film batteries, electrochromic devices and ultracapacitors. The solid state electrolyte layers may be nominally | 10-24-2013 |
20130295431 | FLEXIBLE BATTERY AND FLEXIBLE ELECTRONIC DEVICE INCLUDING THE SAME - A flexible battery and a flexible electronic device including the flexible battery as a power source. The flexible battery includes a cell stack comprising a plurality of unit cells, and an external casing sealing the cell stack, wherein each of the unit cells comprises a negative electrode, a positive electrode, an electrolyte layer disposed between the negative electrode and the positive electrode, and a first polymer film at least partially surrounding the negative electrode, the positive electrode, and the electrolyte layer. | 11-07-2013 |
20130323565 | MULTI-CELL BATTERY - A flexible battery includes a first substrate layer with a first cell portion, a second cell portion, and a bridge portion connecting the first and second cell portions. An electrical bridge electrically couples a first electrochemical cell to a second electrochemical cell in series or parallel, and an electrical bridge is flexible and extends across the bridge portion of the first substrate layer. A second substrate layer is connected to the first substrate layer such that both of the first and second electrochemical cells are separately sealed. The flexible battery is configured to be folded over itself along the bridge portion such that the first and second electrochemical cells are arranged in a covering relationship. Optionally, an open gap area is disposed over the bridge portion of the first substrate to facilitate folding the flexible battery over itself along a line extending through the bridge portion. | 12-05-2013 |
20130323566 | THIN SECONDARY BATTERY - A thin secondary battery with a power-generating element | 12-05-2013 |
20130323567 | MOLTEN SALT BATTERY AND METHOD FOR PRODUCTION THEREOF - It is an object to provide a molten salt battery which is capable of stably performing charging and discharging without using an internal elastic body for pressure contact as an essential constituent element. For achieving the object, the molten salt battery of the present invention includes: a molten salt battery body in which positive electrodes and negative electrodes are alternately stacked with a separator containing molten salt as an electrolyte interposed between the positive electrode and the negative electrode; and a battery case which is formed of a material having flexibility and hermetically covers the molten salt battery body while exposing only terminal parts from the positive electrode and negative electrode. When the battery case is brought into a negative pressure state at the inside, the battery case itself compresses the molten salt battery body in a stacking direction under external pressure based on atmospheric pressure. | 12-05-2013 |
20130344372 | STRESS RELIEF BODY TO PREVENT CELL SEAL FAILURE DURING ASSEMBLY - A stress relief body is described for maintaining a safe bend radius on the seal of a pouch cell to prevent crimping of the cell covers and other damage. When the seal area of the cell pouch is folded to reduce the overall size of the resulting battery pack the stress relief body is integrated with the pouch cell to maintain the safe bend radius. | 12-26-2013 |
20140079979 | FLEXIBLE SECONDARY BATTERY - A flexible secondary battery includes an electrode stack structure. The electrode stack structure includes a first electrode layer including a first metal current collector, a second electrode layer including a second metal current collector, an isolation layer between the first electrode layer and the second electrode layer, connection tabs respectively extended from an end portion of the first metal current collector at a first end portion of the first electrode layer and an end portion of the second metal current collector at a first end portion of the second electrode layer; and a fixing element which fixes the end portions of the first and second metal current collectors only at a first end portion of the electrode stack structure. Second end portions of the first and second electrode layers opposite to the first end portions thereof are movable. | 03-20-2014 |
20140199578 | FLEXIBLE ALKALINE BATTERY - This invention presents the development of flexible battery especially primary and secondary alkaline batteries. Nano carbons, in particularly carbon nanotubes are implemented in conductive polymers to develop flexible electrodes. Polymer separators that can withstand high pH and serve the purpose of electrolyte storage is used to enhance performance. The relatively inexpensive multiwall nanotubes represent are effective ingredients in development of flexible electrodes. | 07-17-2014 |
20140220408 | Paper-Based Lithium- Ion Batteries - A flexible paper based battery system with a first a least partially electrically conductive nanomaterial infused paper sheet combined with a first lithium metal oxide electrode sheet disposed in an interference fit between the first infused paper sheet and a dielectric sheet, and a second at least partially electrically conductive nanomaterial infused paper sheet combined with a second lithium metal oxide electrode sheet disposed in an interference fit between the second infused paper sheet and the dielectric sheet. Where the first lithium metal oxide electrode sheet and the second lithium metal oxide sheet are different compositions. | 08-07-2014 |
20150125731 | LAMINATED THIN FILM BATTERY - Disclosed is a laminated thin film battery which is capable of exhibiting a high capacity and does not require a separate barrier to be formed on a surface after lamination. A first thin film battery and a second thin film battery, in which cathode current collectors and anode current collectors are formed on first surfaces, are laminated in such a type that the respective first surfaces face each other. The cathode current collectors of the first thin film battery and the second thin film battery are electrically connected to a cathode terminal, and the anode current collectors of the first thin film battery and the second thin film battery are electrically connected to an anode terminal. | 05-07-2015 |
20150132631 | FLEXIBLE SECONDARY BATTERY - A flexible secondary battery includes: an electrode stack structure including a first electrode layer, a second electrode layer, and a separator disposed between the first and second electrode layers; and a binding structure surrounding the electrode stack structure, where the binder structure is in fixed contact with a first side of the electrode stack structure and is in slidable contact with a second side of the electrode stack structure. | 05-14-2015 |
20150140396 | POWER STORAGE UNIT AND ELECTRONIC DEVICE - One or each of a positive electrode and a negative electrode is covered by a bag-like insulating material. When bending is performed, the bag-like insulating material and an active material slide against each other, whereby lithium deposited on a surface of the active material can be removed. A power storage unit or the like whose function such as charge and discharge capacity is unlikely to be degraded is provided. | 05-21-2015 |
20150140397 | MULTILAYER FILM, EXTERIOR MATERIAL FOR SECONDARY BATTERY, SECONDARY BATTERY, AND ELECTRONIC DEVICE - A novel multilayer film, a multilayer film suitable for an exterior material for a secondary battery, or a multilayer film that can be favorably used for a secondary battery suitable for a portable information terminal is provided. At least a metal layer and a resin layer are stacked as the multilayer film. A resin that constitutes the resin layer preferably has a durometer hardness of A90 or less, preferably A60 or less. Further, it is preferable that the resin be a material that does not break even when it is stretched to 150% of its original length, more preferably to 200% of its original length, in one direction. The thickness of the resin layer is preferably greater than or equal to 100 μm and less than or equal to 5 mm, more preferably greater than or equal to 500 μm and less than or equal to 3 mm. | 05-21-2015 |
20150140398 | NONAQUEOUS SECONDARY BATTERY - To provide a novel structure of a separator in a secondary battery. A nonaquesous secondary battery includes a positive electrode, a negative electrode, an electrolyte solution, a first separator, and a second separator. The first separator and the second separator are provided between the positive electrode and the negative electrode. The first separator is provided with a first pore, the second separator is provided with a second pore, and the size of the first pore is different from the size of the second pore. Furthermore, the proportion of the volume of the first pores in the first separator is different from the proportion of the volume of the second pores in the second separator. | 05-21-2015 |
20150140399 | CABLE-TYPE SECONDARY BATTERY - A cable-type secondary battery, includes an electrode assembly including first and second polarity electrodes with a thin and long shape, each electrode having a current collector whose cross-section perpendicular to its longitudinal direction is a circular, asymmetrical oval or polygonal shape, and an electrode active material applied onto the surface of the current collector, and a separator or an electrolyte layer interposed between the first and second polarity electrodes; and a cover member surrounding the electrode assembly. Also, the cable-type secondary battery is provided with a first polarity terminal and a second polarity terminal connected to the first polarity electrode and the second polarity electrode, respectively, at the end of the cable-type secondary battery; and a housing cap configured to fix the first and second polarity terminals and cover the end of the cable-type secondary battery. | 05-21-2015 |
20150295272 | DAMAGE TOLERANT BATTERIES - Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that have damage tolerance, and in particular, are tolerant to physical damage due to short circuit, crushing, or overheating. In some embodiments, an electrochemical cell includes a positive electrode, a negative electrode and an ion-permeable membrane separating the positive electrode and the negative electrode. At least one of the positive electrode and the negative electrode can include a semi-solid ion-storing redox composition which has a thickness of at least about 250 μm. The electrochemical cell can have a first operating voltage in a first planar configuration and a second operating voltage in a second non-planar configuration such that the first operating voltage and the second operating voltage are substantially similar. In some embodiments, the electrochemical cell has a bend axis such that the electrochemical cell is bent about the bend axis in the second non-planar configuration. | 10-15-2015 |
20150325820 | FLEXIBLE SECONDARY BATTERY - A flexible secondary battery includes an electrode assembly, a first external cover that is located on a first surface of the electrode assembly, and a second external cover that is located on a second surface of the electrode assembly, the second external cover and the first external cover including a sealing portion where edges of the first external cover and the second external cover are attached to each other to seal the electrode assembly. At least one of the first external cover and the second external cover includes a stress-relief pattern in a center portion. | 11-12-2015 |
20150333302 | FLEXIBLE BAND OR STRAP WITH INTEGRATED BATTERY - A method, apparatus, and system relating to a strap or band with an integrated battery are disclosed. The band or strap is designed to retain some flexibility and to interface with an electronic user device (e.g., smart watch, smartphone, etc.). | 11-19-2015 |
20150333359 | ELECTRONIC DEVICE WITH SECONDARY BATTERY - In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery that is durable even when force is externally applied thereto is provided. A cushioning material is provided in a region surrounded by an exterior body of a secondary battery. Specifically, a cushioning material is provided on the periphery of a current collector such that a sealing portion of an exterior body (film) is located outside the cushioning material. | 11-19-2015 |
20150340664 | ELECTRONIC DEVICE INCLUDING SECONDARY BATTERY - In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery which is resistant to external force is obtained. An opening is provided in a central portion of the secondary battery, and a terminal is formed in the opening. An outer edge of the secondary battery is fixed by thermocompression bonding. In addition, the central portion of the secondary battery is fixed by thermocompression bonding, so that the amount of bending is limited even when the outer edge portion of the secondary battery is bent. | 11-26-2015 |
20160006070 | FLEXIBLE SECONDARY BATTERY - A flexible secondary battery includes an electrode assembly including a stack having a first electrode plate, a second electrode plate, and a separator between the first and second electrode plates, and a fixing member fixing a first end portion of the stack, a first electrode tab and a second electrode tab connected to the first electrode plate and the second electrode plate, respectively, and a molding member surrounding a first end portion of the electrode assembly including the fixing member, and a connection region between the electrode assembly and the first and second electrode tabs, wherein positional variations of a second end portion of the electrode assembly are relatively large as compared to positional variations of the first end portion of the electrode assembly. | 01-07-2016 |
20160013457 | FLEXIBLE SECONDARY BATTERY | 01-14-2016 |
20160013458 | FLEXIBLE SECONDARY BATTERY | 01-14-2016 |
20160013459 | FLEXIBLE SECONDARY BATTERY | 01-14-2016 |
20160013469 | SECONDARY BATTERY AND ELECTRONIC DEVICE INCLUDING THE SAME | 01-14-2016 |
20160020437 | FLEXIBLE SECONDARY BATTERY - A flexible secondary battery including an electrode assembly that includes a first electrode layer, a second electrode layer, and a separator between the first and second electrode layers; a protection film on at least one of an upper surface or a lower surface of the electrode assembly; a fixing unit, the fixing unit fixing one end portion of each of the first electrode layer, the separator, the second electrode layer, and the protection film; and a sealing unit, the sealing unit sealing the electrode assembly and the protection film therein, wherein a melting point of the protection film is higher than a melting point of the separator. | 01-21-2016 |
20160079625 | FLEXIBLE ELECTRODE ASSEMBLY AND ELECTROCHEMICAL DEVICE INCLUDING THE ELECTRODE ASSEMBLY - An electrode assembly including an electrode structure including a first electrode plate and a second electrode plate which are alternately disposed, and a separator film that is disposed between the first electrode plate and the second electrode plate, wherein a surface of the separator film is bonded to the first electrode plate, and a binding member, which rigidly connects at least one selected from the first electrode plate, the second electrode plate, and the separator film. | 03-17-2016 |
20160087305 | SECONDARY BATTERY - A gel electrolyte and a separator are provided between the positive electrode current collector and the negative electrode current collector. The plurality of positive electrode current collectors and the plurality of negative electrode current collectors are stacked such that surfaces of negative electrodes with which active material layers are not coated or surfaces of positive electrodes with which active material layers are not coated are in contact with each other. | 03-24-2016 |
20160093839 | POUCH-TYPE BATTERY AND METHOD OF MANUFACTURING THE SAME - There is provided a pouch-type battery that includes an exterior packaging member having an accommodating space in which an electrode and an electrolyte are accommodated and which has a curved shape at least in a first direction. The exterior packaging member includes a first film member on which a cup section having the accommodating space inside is provided, a second film member disposed to face the first film member, and a sealing section around the cup section, with which the first and second film members are bonded to each other and the accommodating space is sealed. A top surface of the cup section of the first film member has a curved shape and is provided with a plurality of concave portions or convex portions, and the sealing section has a curved shape in the first direction and is configured of a flat surface on which neither concave portion nor convex portion is provided. | 03-31-2016 |
20160093879 | NEGATIVE ACTIVE MATERIAL, LITHIUM BATTERY INCLUDING THE NEGATIVE ACTIVE MATERIAL, AND METHOD OF PREPARING THE NEGATIVE ACTIVE MATERIAL - A negative active material including: a composite particle including a non-carbonaceous nanoparticle that allows lithiation and delithiation of lithium ions, and a (meth)acryl polymer disposed on a surface of the non-carbonaceous nanoparticle; and a crystalline carbonaceous nanosheet. | 03-31-2016 |
20160104871 | FLEXIBLE ELECTRODE ASSEMBLY AND ELECTROCHEMICAL DEVICE HAVING THE ELECTRODE ASSEMBLY - An electrode assembly includes an electrode stack structure including a first electrode assembly sheet having flexibility and a second electrode assembly sheet having flexibility, where and the first and second electrode assemblies are alternately disposed one on another, and a binding unit which binds a portion of the electrode stack structure. The first electrode assembly sheet includes first and second separator films disposed to face each other, a first electrode sheet which is disposed between the first and second separator films and includes a first electrode collector and a first active material layer, and a first confining unit which restricts a movement of the first electrode sheet with respect to the first and second separator films. | 04-14-2016 |
20160141714 | Paper-Based Lithium-Ion Batteries - A method for fabricating a paper lithium ion cell including depositing a first lithium-metal oxide composition onto a first electrically conducting microfiber paper substrate to define a cathode, depositing a second, different lithium-metal oxide composition onto a second electrically conducting coated microfiber paper substrate to define an anode, separating the cathode and the anode with a barrier material, infusing the cathode and the anode with electrolytes, and encapsulating the anode, the cathode, and the barrier material in a housing. | 05-19-2016 |
20160149253 | FLEXIBLE SECONDARY BATTERY - A flexible secondary battery includes: an electrode stack assembly including a first electrode plate, a second electrode plate, and a separator between the first electrode plate and the second electrode plate; a first electrode tab electrically connected to the first electrode plate; and a second electrode tab electrically connected to the second electrode plate. One end of the first electrode tab and one end of the second electrode tab are disposed inside the electrode stack assembly and are stacked together with the first electrode plate, the second electrode plate, and the separator to form the electrode stack assembly. A first welding part is formed between, and binds, at least one of i) a portion of the first electrode plate and a portion of the first electrode tab and ii) a portion of the second electrode plate and a portion of the second electrode tab. | 05-26-2016 |
20160181653 | FLEXIBLE ELECTRODE ASSEMBLY AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME | 06-23-2016 |
20170237116 | LITHIUM ION CELL | 08-17-2017 |
20180026236 | FLEXIBLE RECHARGEABLE BATTERY | 01-25-2018 |