Class / Patent application number | Description | Number of patent applications / Date published |
428698000 | Carbide-, nitride-, or sulfide-containing layer | 44 |
20080286608 | CUTTING TOOL - The invention provides a single or a multilayer PVD coated sharp edged cutting tool, which can at the same time exhibit satisfactory wear and thermochemical resistance as well as resistance to edge chipping. The cutting tool comprises a sintered body made of a cemented carbide, a CBN, a cermet or a ceramic material having a cutting edge with an edge radius R | 11-20-2008 |
20090017333 | METHOD OF FORMING GROUP-III NITRIDE CRYSTAL, LAYERED STRUCTURE AND EPITAXIAL SUBSTRATE - Heat treatment is conducted at a predetermined temperature of not less than 1250° C. on an underlying substrate obtained by epitaxially forming a first group-III nitride crystal on a predetermined base as an underlying layer. Three-dimensional fine irregularities resulting from crystalline islands are created on the surface of the underlying layer. A second group-III nitride crystal is epitaxially formed on the underlying substrate as a crystal layer. There are a great many fine voids interposed at the interface between the crystal layer and underlying substrate. The presence of such voids suppresses propagation of dislocations from the underlying substrate, which reduces the dislocation density in the crystal layer. As a result, the crystal layer of good crystal quality can be obtained. | 01-15-2009 |
20090042059 | METHOD FOR PRODUCING A COATED SUBSTRATE BODY, SUBSTRATE BODY COMPRISING A COATING AND USE OF THE COATED SUBSTRATE BODY - The invention relates to a method for producing a coated substrate body by chemical vapour deposition at least on one layer made of a carbonitride of a metal of IVa-VIa-groups of the periodic table, wherein a monocyclic hydrocarbon is used in the gas atmosphere during the deposition, in addition to a nitrile. According to the invention, the thus produced coated substrate body has a high degree of hardness and is used, preferably, in cutting operations where the cutting speeds are ≧250 m/min. | 02-12-2009 |
20090047544 | Method of preparing pressureless sintered, highly dense boron carbide materials - In a method of preparing a boron carbide material, boron carbide powder is washed with essentially pure water at an elevated temperature to generate washed boron carbide powder. The washed boron carbide powder is combined with a sintering aid. The mixture of the boron carbide powder and the sintering aid is pressed to form a shaped material, and the shaped material is sintered. A sintered boron carbide material comprises a boron carbide component that includes boron carbide, elemental carbon, and not more than about 0.6 wt % of oxygen on the basis of the total weight of the boron carbide component. The sintered boron carbide material has a density of at least about 99% of the theoretical density. Another sintered boron carbide material comprises a boron carbide component that includes boron carbide, silicon carbide, elemental carbon, and not more than about 0.3 wt % oxygen on the basis of the total weight of the boron carbide component, and has a density of at least about 97% of the theoretical density. | 02-19-2009 |
20090075120 | Thermally conductive graphite reinforced alloys - Embodiments of the present invention provide composite bodies having a discontinuous graphite preform and at least one silicon-bearing metal alloy infiltrant. Embodiments of the present invention also provide methods for producing such composite bodies. The metal alloy is preferably comprised of aluminum, copper, or magnesium, or combinations thereof. Certain preferred embodiments provide at least one aluminum alloy having from about 5% silicon to about 30% silicon, more preferably from about 11% to about 13% silicon, as an alloying element. Certain presently preferred embodiments provide an aluminum-silicon eutectic composition having about 12.5% silicon. Embodiments of the invention provide composite materials be “tuned” to more closely match thermal expansion characteristics of a number of semiconductor or integrated circuit materials such as, but not limited to, silicon, alumina, aluminum nitride, gallium nitride, and gallium arsenide while also providing high thermal conductivity. Embodiments of the present invention are especially suited for use as a heat sink, a heat spreader, or both. | 03-19-2009 |
20090136780 | METHOD OF REDUCING DISLOCATIONS IN GROUP III NITRIDE CRYSTAL, AND SUBSTRATE FOR EPITAXIAL GROWTH - An epitaxial substrate | 05-28-2009 |
20090155625 | Methods of Joining Aluminum Nitride Sinters and Aluminum Nitride Joined Articles - [Problem] It is an object to provide a joining method that enables to join aluminum nitride sinters together efficiently and tightly. | 06-18-2009 |
20090162695 | SUBSTRATE WITH ANTIMICROBIAL PROPERTIES AND PROCESS FOR OBTAINING SUCH SUBSTRATE - A process for the production of a substrate having antimicrobial properties, including depositing a mixed layer on a substrate by sputtering under vacuum, the mixed layer containing at least one antimicrobial agent and a binder material selected from metal oxides, oxynitrides, oxycarbides, carbides, diamond like carbon and nitrides, where mixed targets are used for depositing the mixed layer. Substrates with mixed layers. Substrates made by the invention processes. | 06-25-2009 |
20090197117 | WORM OPTICAL RECORDING MEDIUM - A write-once-read-many optical recording medium is disclosed that includes a support substrate; a recording layer on the support substrate, the recording layer containing an oxide of one of a metal and a metalloid as a principal component; and a layer adjacent to the recording layer. The recording layer includes a region where a constituent element of the adjacent layer is dispersed. Recording and reproduction are performable with laser light of a blue wavelength region. | 08-06-2009 |
20090197118 | Method for producing Group III nitride-based compound semiconductor, wafer, and Group III nitride-based compound semiconductor device - Provided is a method for producing a Group III nitride-based compound semiconductor having an M-plane main surface. The method employs a sapphire substrate having a main surface which is inclined by 30° with respect to R-plane about a line of intersection L | 08-06-2009 |
20090280354 | Process for Producing Substrate of AlN Crystal, Method of Growing AlN Crystal, and Substrate of AlN Crystal - Affords AlN crystal substrate manufacturing methods whereby large-scale, high-quality AlN crystal substrates can be manufactured; AlN crystal growth methods whereby bulk AlN of superior crystallinity can be grown; and AlN crystal substrates composed of the AlN crystal grown by the growth methods. AlN crystal substrate manufacturing method including: a step of growing an AlN crystal by sublimation onto a heterogeneous substrate to a thickness of, with respect to the heterogeneous-substrate diameter r, 0.4 | 11-12-2009 |
20090291323 | DISPERSION STRENGTHENED CERAMIC THERMAL BARRIER COATING - A method of forming a thermal barrier coating on a turbine component is disclosed. The method comprises first depositing a bond coat on the turbine component. A dispersion strengthened ceramic layer containing boride particles as dispersoids is formed on the bond coat layer by plasma deposition. Ceramic coated boride particles comprise the plasma deposition feedstock in order to disperse the boride particles in the ceramic layer. The dispersion strengthened ceramic layer includes at least one of yttria-stabilized zirconia, rare earth stabilized zirconia, rare earth stabilized hafnia, and rare earth stabilized titanate. | 11-26-2009 |
20090297885 | Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide - A composite comprising an inorganic substrate with a coating comprising activated carbon and a metal sulfide. The composite may be used, for example, for the removal of a contaminant, such as mercury, from a fluid stream. | 12-03-2009 |
20100047622 | METAL POWDER - The invention provides for a cermet powder containing
| 02-25-2010 |
20100055498 | Process for the Moderately Refractory Assembling of Articles Made of SiC-Based Materials by Non-Reactive Brazing in an Oxidizing Atmosphere, Brazing Compositions, and Joint and Assembly Obtained by this Process - Process for the moderately refractory assembly of at least two articles made of silicon carbide-based materials by non-reactive brazing in an oxidizing atmosphere, in which the articles are placed in contact with a non-reactive brazing composition and the assembly formed by the articles and the brazing composition is heated in an oxidizing atmosphere at a brazing temperature sufficient to melt the brazing composition so as to form a moderately refractory joint, wherein the non-reactive brazing composition is a composition A composed of silica (SiO | 03-04-2010 |
20100104892 | ALUMINUM-NITRIDE-BASED COMPOSITE MATERIAL, METHOD FOR MANUFACTURING THE SAME, AND MEMBER FOR A SEMICONDUCTOR MANUFACTURING APPARATUS - The aluminum-nitride-based composite material according to the present invention is an aluminum-nitride-based composite material that is highly pure with the content ratios of transition metals, alkali metals, and boron, respectively as low as 1000 ppm or lower, has AlN and MgO constitutional phases, and additionally contains at least one selected from the group consisting of a rare earth metal oxide, a rare earth metal-aluminum complex oxide, an alkali earth metal-aluminum complex oxide, a rare earth metal oxyfluoride, calcium oxide, and calcium fluoride, wherein the heat conductivity is in the range of 40 to 150 W/mK, the thermal expansion coefficient is in the range of 7.3 to 8.4 ppm/° C., and the volume resistivity is 1×10 | 04-29-2010 |
20100119873 | Coated article with black color - An article is coated with a coating having a black color. In a preferred embodiment, the coating comprises a nickel or polymer basecoat layer, and a first color layer comprised of oxygen-rich refractory metal oxycarbides, a second color layer comprising oxygen-rich refractory metal oxycarbides and a top layer of refractory metal oxides. | 05-13-2010 |
20100143748 | Method for Growing Aluminum Nitride Crystal, Process for Producing Aluminum Nitride Crystal, and Aluminum Nitride Crystal - Methods of growing and manufacturing aluminum nitride crystal, and aluminum nitride crystal produced by the methods. Preventing sublimation of the starting substrate allows aluminum nitride crystal of excellent crystallinity to be grown at improved growth rates. The aluminum nitride crystal growth method includes the following steps. Initially, a laminar baseplate is prepared, furnished with a starting substrate having a major surface and a back side, a first layer formed on the back side, and a second layer formed on the first layer. Aluminum nitride crystal is then grown onto the major surface of the starting substrate by vapor deposition. The first layer is made of a substance that at the temperatures at which the aluminum nitride crystal is grown is less liable to sublimate than the starting substrate. The second layer is made of a substance whose thermal conductivity is higher than that of the first layer. | 06-10-2010 |
20100183900 | METHOD FOR PRODUCING PVD COATINGS - The present invention relates to a method of producing coatings of metal oxide, nitride or carbide or mixtures thereof, whereby operating a High Power Impulse Magnetron Sputtering, HIPIMS, discharged on one or more target (s) ( | 07-22-2010 |
20100190032 | Al-Ti-Ru-N-C Hard Material Coating - A monolayer or multilayer nitridic or cabonitridic hard material coating contains Al and Ti and at least one of the layers comprises the composition (Al | 07-29-2010 |
20100215987 | Aluminum nitride single crystal film, aluminum nitride single crystal multi-layer substrate and manufacturing processes thereof - In a method of manufacturing an aluminum nitride single crystal film on a substrate by heating a sapphire substrate in the presence of carbon, nitrogen and carbon monoxide, an aluminum compound which differs from the raw material sapphire substrate and the formed aluminum nitride single crystal and can control the concentration of aluminum in the heating atmosphere, such as aluminum nitride or alumina, is made existent in a reaction system to promote a reduction nitriding reaction. | 08-26-2010 |
20100233511 | BODIES COATED WITH A HARD MATERIAL AND METHOD FOR THE PRODUCTION THEREOF - The invention relates to bodies coated with a hard material, comprising a multi-layer coating system containing at least one Ti | 09-16-2010 |
20100239885 | High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive - A method for producing a high temperature-resistant article comprises an assembling step of foaming an assembly of a first substrate and a second substrate with an adhesive layer interposed therebetween and comprising paste of powder of at least one carbide of niobium carbide, hafnium carbide, tantalum carbide and tungsten carbide; and a bonding step of heating the assembly to bond the first substrate and the second substrate by sintering, thereby obtaining a high temperature-resistant article comprising the assembly after sintering. Moreover, a method for producing a high temperature-resistant article comprises a coating step of coating a slurry comprising powder of at least one carbide of niobium carbide, hafnium carbide, tantalum carbide and tungsten carbide on a surface of a high temperature-resistant substrate; a drying step of drying the substrate after the coating step; and a film-forming step of heating the substrate after the drying step to form a carbide coating film on the surface of the substrate by sintering, thereby obtaining a high temperature-resistant article having the carbide coating film. A high temperature-resistant article of a complicated shape can be easily produced at low costs by these methods. | 09-23-2010 |
20100255345 | COATED PCBN CUTTING INSERT, COATED PCBN CUTTING TOOL USING SUCH COATED PCBN CUTTING INSERT, AND METHOD FOR MAKING THE SAME - A coated polycrystalline cubic boron nitride cutting insert useful in a cutting tool for removing material from a workpiece, and a method for making the same. The cutting insert including a polycrystalline cubic boron nitride substrate with a rake surface and at least one flank surface, and a cutting edge formed at the juncture between the rake surface and the flank surface. A wear-resistant coating scheme is on the polycrystalline cubic boron nitride substrate. The wear-resistant coating scheme includes the following coating layers. An inner coating layer region is on at least some of the rake surface and at least some of the flank surface of the polycrystalline cubic boron nitride substrate. An alumina-containing coating layer region, which has at least one exposed alumina coating layer, is on the inner coating layer region. The exposed alumina coating layer exhibiting a post-blasted stress condition with stress ranging between about 50 MPa (tensile stress) and about −2 GPa (compressive stress) as measured by XRD using the Psi tilt method and the (024) reflection of alumina. The exposed coating layer is the result of wet blasting an outer titanium-containing coating layer from the surface of the alumina-containing coating layer region. | 10-07-2010 |
20100285335 | POLYCRYSTALLINE DIAMOND (PCD) MATERIALS - The invention is for a polycrystalline diamond material comprising a first phase of bonded diamond particles and a second phase interspersed through the first phase. The second phase contains vanadium in the form of the metal or vanadium carbide or vanadium tungsten carbide or two or more of these forms and may be present in the polycrystalline diamond material in the range 1 to 8 percent by mass of the material. | 11-11-2010 |
20110123829 | Composite coating for finishing of hardened steels - The present invention relates to a cutting tool insert, solid end mill, or drill, comprising a substrate and a coating. The coating is composed of one or more layers of refractory compounds of which at least one layer comprises a cubic (Me,Si)X phase, where Me is one or more of the elements Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and Al, and X is one or more of the elements N, C, O or B. The ratio R=(at-% X)/(at-% Me) of the c-MeSiX phase is between 0.5 and 1.0 and X contains less than 30 at-% of O+B. This invention is particularly useful in metal machining applications where the chip thickness is small and the work material is hard e.g. copy milling using solid end mills, insert milling cutters or drilling of hardened steels. | 05-26-2011 |
20110189504 | PREPARATION OF METAL CARBIDE FILMS - A coating solution including a polymer and a metal selected from scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, boron, aluminum and silicon can be deposited on a substrate and then exposed at elevated temperature to a reducing atmosphere including a gaseous carbon source. Solvent evaporates and the polymer decomposes and a metal carbide film forms on the substrate. Metal carbide films of titanium carbide, vanadium carbide, niobium carbide, tantalum carbide, tungsten carbide, silicon carbide, and several mixed carbides were prepared. X-Ray diffraction patterns of metal carbide films provide evidence of a highly ordered structure and excellent alignment with the substrate. A composite film of niobium carbide and carbon nanotubes was also prepared. | 08-04-2011 |
20110262773 | Ammonothermal Method for Growth of Bulk Gallium Nitride - A high-quality, large-area seed crystal for ammonothermal GaN growth and method for fabricating. The seed crystal comprises double-side GaN growth on a large-area substrate. The seed crystal is of relatively low defect density and has flat surfaces free of bowing. The seed crystal is useful for producing large-volume, high-quality bulk GaN crystals by ammonothermal growth methods for eventual wafering into large-area GaN substrates for device fabrication. | 10-27-2011 |
20120237794 | ALUMINUM OXYNITRIDE COATED ARTICLE AND METHOD OF MAKING THE SAME - A coated article such as a coated cutting tool or coated wear part, which includes a substrate and a coating scheme on the substrate. The coating scheme has a titanium-containing coating layer, and an aluminum oxynitride coating layer on the titanium-containing coating layer. The aluminum oxynitride includes a mixture of phases having a hexagonal aluminum nitride type structure (space group: P63mc), a cubic aluminum nitride type structure (space group: Fm-3m), and optionally amorphous structure. The aluminum oxynitride coating layer has a composition of aluminum in an amount between about 20 atomic percent and about 50 atomic percent, nitrogen in an amount between about 40 atomic percent and about 70 atomic percent, and oxygen in an amount between about 1 atomic percent and about 20 atomic percent. The method of making the coated article includes a step of providing a substrate and depositing an aluminum oxynitride coating layer from a gaseous mixture that includes nitrogen, aluminum tri-chloride, ammonia, carbon dioxide, hydrogen chloride, optionally carbon monoxide, optionally argon, and hydrogen. | 09-20-2012 |
20120321910 | METHODS AND APPARATUS FOR ATOMIC LAYER DEPOSITION ON LARGE AREA SUBSTRATES - A method for depositing one or more materials on a substrate comprises placing at least a portion of the substrate proximate to a plurality of deposition modules such that the substrate and each of the plurality of deposition modules define a respective one of a plurality of process spaces therebetween. Each of the plurality of process spaces is in fluidic communication with one or more of a plurality of draw gas injection chambers. Subsequently, a first precursor gas and a second precursor gas are separately injected into the plurality of process spaces while injecting a draw gas into the plurality of draw gas injection chambers, and a sweep gas is injected into the plurality of process spaces while injecting substantially no draw gas into the plurality of draw gas injection chambers. | 12-20-2012 |
20130171474 | HARD COATING LAYER AND METHOD FOR FORMING THE SAME - The present invention relates to hard coating layer and a method for forming the hard coating layer. A method for forming hard coating layer which comprises: washing a substrate; installing the washed substrate in a vacuum equipment, and vacuating the chamber of the vacuum equipment; cleaning the substrate; forming oblique coating layer on the substrate; and forming vertical coating layer, vertically to the substrate, on the oblique coating layer by applying bias-voltage after forming oblique coating layer is provided. According to present invention, hardness of coating layer may be enhanced by forming a oblique coating layer and vertical coating layer on a substrate. | 07-04-2013 |
20130252023 | Caden Edge Welding Process - A method and apparatus for applying a wear coating to the back side of a wear part. | 09-26-2013 |
20130273395 | TWO-DIMENSIONAL NANOSTRUCTURED TUNGSTEN CARBIDE AND METHOD FOR FABRICATING THE SAME - 2-dimensional nanostructured tungsten carbide which is obtained by control of the alignment of nanostructure during growth of tungsten carbide through control of the degree of supersaturation and a method for fabricating same are disclosed. The method for fabricating 2-dimensional nanostructured tungsten carbide employs a chemical vapor deposition process wherein a hydrogen plasma is applied to prepare 2-dimensional nanostructured tungsten carbide vertically aligned on a nanocrystalline diamond film. The chemical vapor deposition process wherein the hydrogen plasma is applied includes: disposing a substrate with the nanocrystalline diamond film formed thereon on an anode in a chamber, disposing a surface-carburized tungsten cathode above and at a distance from the substrate, and applying the hydrogen plasma into the chamber. | 10-17-2013 |
20140030549 | GROUP III ELEMENT NITRIDE CRYSTAL PRODUCING METHOD AND GROUP-III ELEMENT NITRIDE CRYSTAL - A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel. | 01-30-2014 |
20140087209 | METHOD OF GROWING GROUP III NITRIDE CRYSTALS - The present invention provides a method of growing an ingot of group III nitride. Group III nitride crystals such as GaN are grown by the ammonothermal method on both sides of a seed to form an ingot and the ingot is sliced into wafers. The wafer including the first-generation seed is sliced thicker than the other wafers so that the wafer including the first-generation seed does not break. The wafer including the first-generation seed crystal can be used as a seed for the next ammonothermal growth. | 03-27-2014 |
20140234664 | PEELING METHOD, SEMICONDUCTOR DEVICE, AND PEELING APPARATUS - To improve peelability, yield in a peeling step, and yield in manufacturing a flexible device. A peeling method is employed which includes a first step of forming a peeling layer containing tungsten over a support substrate; a second step of forming, over the peeling layer, a layer to be peeled formed of a stack including a first layer containing silicon oxynitride and a second layer containing silicon nitride in this order and forming an oxide layer containing tungsten oxide between the peeling layer and the layer to be peeled; a third step of forming a compound containing tungsten and nitrogen in the oxide layer by heat treatment; and a fourth step of peeling the peeling layer from the layer to be peeled at the oxide layer. | 08-21-2014 |
20150345010 | METHODS OF MAGNETICALLY ENHANCED PHYSICAL VAPOR DEPOSITION - Methods for magnetically enhanced physical vapor deposition are disclosed. The methods include providing a magnetically enhanced vapor deposition device defining a vapor deposition chamber, having a magnetic field source proximate a magnetron target that is positioned within the vapor deposition chamber and coupled to a power source, and having a substrate holder positioned within the vapor deposition chamber, placing a substrate in the substrate holder, activating the magnetic field source to provide a magnetic field that controls a charged particle flux within the physical vapor deposition chamber, and activating the power source thereby depositing a few-layer film of the material comprising the magnetron target onto the substrate. The few-layer film may be a transition metal dichalcogenide, such as MoS | 12-03-2015 |
20150345012 | SURFACE COATED MEMBER AND METHOD FOR MANUFACTURING SAME - A surface coated member having improved stability and a longer service life is provided. The surface coated member of the present invention includes a base member and a hard coating formed on a surface thereof. The hard coating is constituted of one or more layers. At least one of the layers is formed by a CVD method and includes a multilayer structure having a first unit layer and a second unit layer being layered alternately. The first unit layer includes a first compound containing Ti and one or more kind of element selected from the group consisting of B, C, N, and O. The second unit layer includes a second compound containing Al and one or more kind of element selected from the group consisting of B, C, N, and O. | 12-03-2015 |
20150361269 | HARD COATING, METHOD FOR MANUFACTURING SAME, AND HARD-COATED ARTICLE - Disclosed is a hard coating including a chemical composition specified by formula: (Ti | 12-17-2015 |
20150380173 | BATTERY TYPE SUPER CAPACITOR ELECTRODE MATERIAL HAVING HIGH POWER DENSITY AND HIGH ENERGY DENSITY AND METHOD FOR PREPARING THE SAME - A new battery type super capacitor electrode material having high power density and high energy density is provided. The electrode material is made from multi-layer of Bi | 12-31-2015 |
20160014923 | COMBINING DIFFERENT TYPES OF MOISTURE-RESISTANT MATERIALS | 01-14-2016 |
20160017485 | OXYGEN-FREE ATOMIC LAYER DEPOSITION OF INDIUM SULFIDE - A method for synthesizing an In(III) N,N′-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately −30° C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N′-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth. | 01-21-2016 |
20160060747 | METHOD OF MANUFACTURING COMPOUND FILM - An amount of nitrogen in a compound film is controlled. A method of manufacturing compound film comprising forming films laminated on a substrate placed at a film forming chamber is provided. According to the method of manufacturing compound film, a first compound layer including one or more elements selected from metal elements and semimetal elements and oxygen element and a second compound layer including one or more elements and nitrogen element are laminated alternately. The first compound layer is formed by a Filtered Arc Ion Plating method and the second compound layer is formed by a sputtering method. | 03-03-2016 |
20160138182 | METHODS FOR FORMING MIXED METAL OXIDE EPITAXIAL FILMS - Provided are methods for forming a mixed metal oxide epitaxial film (e.g., ScAlMgO | 05-19-2016 |