Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Refractory metal salt or oxide

Subclass of:

428 - Stock material or miscellaneous articles

428411100 - COMPOSITE (NONSTRUCTURAL LAMINATE)

428457000 - Of metal

428469000 - Next to metal salt or oxide

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
428472000 Refractory metal salt or oxide 27
20080199711HEAT RESISTANT MEMBER - A heat resistant member includes a metal or ceramic substrate and a thermal-barrier coating layer disposed on the substrate. The thermal-barrier coating layer includes a metal layer functioning as a bonding layer and one or more ceramic layers disposed on the metal layer. At least one of the ceramic layers is mainly composed of a hafnium oxide-based ceramic layer containing 85% or more of hafnium oxide. Due to the above structure, there can be provided a heat resistant member with high heat resistance and durability which has a thermal-barrier coating layer with stable thermal conductivity at elevated temperatures, namely, not less than 1,200° C., and resistance to cracking and delamination due to sintering.08-21-2008
20080241561ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF FABRICATING THE SAME - An organic light emitting display device and a method of fabricating the same, in which a resonance effect is suppressed and transmittance is substantially the same in a wavelength band of visible light. The organic light emitting display device includes: a substrate; a first electrode disposed on the substrate and including a reflection layer; an organic layer disposed on the first electrode and including a white emission layer; a second electrode disposed on the organic layer; a transmittance controlled layer disposed on the second electrode; and a metal layer disposed on the transmittance controlled layer.10-02-2008
20080286589INCORPORATION OF NITROGEN INTO HIGH K DIELECTRIC FILM - A high k dielectric film and methods for forming the same are disclosed. The high k material includes two peaks of impurity concentration, particularly nitrogen, such as at a lower interface and upper interface, making the layer particularly suitable for transistor gate dielectric applications. The methods of formation include low temperature processes, particularly CVD using a remote plasma generator and atomic layer deposition using selective incorporation of nitrogen in the cyclic process. Advantageously, nitrogen levels are tailored during the deposition process and temperatures are low enough to avoid interdiffusion and allow maintenance of the desired impurity profile.11-20-2008
20080292895Method of Producing a Gas Barrier Polymer Foil and a Gas Barrier Polymer Foil - The invention relates to polymer foil comprising at least one polymer layer coated with a barrier glass coating of an oxide composition, wherein said oxide composition comprises the element Si in the form of an oxide network, the oxide composition preferably comprises Si and at least one other element X in an oxide network. The oxide network may preferably be applied using plasma. The foil may be a multi-layered foil comprising a plurality of layers, at least one of the layers being a barrier glass coating. The foil has good barrier properties.11-27-2008
20090004491Surface Treated Metal Material - A metal material having a coating formed by a surface treatment on the surface of the metal material is provided. The coating has an excellent corrosion resistance with or without further coating that is equivalent or superior to the prior art coating formed by zinc phosphate treatment or chromate treatment, is free from sludge formation or environmentally harmful components, and is formed by using a component capable of deposition with a simple method. A surface treated metal material having on a surface of a metal material a coating layer formed by a surface treatment, the coating layer comprising the following components (A) and (B): (A) oxide and/or hydroxide of at least one metallic element selected from the group consisting of Ti, Zr, and Hf; and (B) aluminum element; wherein, in the coating layer formed by the surface treatment, weight ratio K01-01-2009
20090004492ELECTROMAGNETIC WAVE SHIELDING LAMINATE AND DISPLAY DEVICE EMPLOYING IT - An electromagnetic wave shielding laminate comprising a transparent substrate and an electromagnetic wave shielding film formed thereon, characterized in that the electromagnetic wave shielding film has, sequentially from the substrate side, a first high refractive index layer made of a material having a refractive index of at least 2.0, a first oxide layer containing zinc oxide as the main component, an electroconductive layer containing silver as the main component, and a second high refractive index layer made of a material having a refractive index of at least 2.0.01-01-2009
20090053540Physical Vapor Deposition Targets Comprising Ti and Zr and Methods of Use - The invention described herein relates to physical vapor deposition targets comprising both Ti and Zr. The targets can comprise a uniform texture across the target surface and throughout the thickness; and can further have an increased mechanical strength compared to high purity titanium and tantalum. The sputtering targets can be utilized to sputter deposit a thin film; and such thin film can be utilized as a copper barrier layer.02-26-2009
20090087673Method for coating fuel system components - The present disclosure includes a method of producing a fuel system component. The method includes providing a substrate and a coating, wherein the substrate comprises steel and the coating comprises a metal nitride. The method also includes applying the coating to at least part of the substrate using a magnetron sputtering deposition process substantially conducted at a temperature less than about 200° C.04-02-2009
20090087674Coating Composition and A Reflective Coating System Including Same - A coating composition is substantially free from chromate and comprises a resin, a metal salt, and an interference pigment. The interference pigment includes mica which has a solar reflective coating disposed thereon. A reflective coating system comprises a cured film formed from the coating composition disposed on a substrate. The cured film has a transparency of at least 75%, as measured according to ASTM 1746. In addition, the cured film has a solar reflectivity of at least 55%, as measured according to ASTM E 1918 and ASTM E 903. The cured film has excellent corrosion resistance properties and adhesion to the substrate.04-02-2009
20090142608Method for bonding refractory ceramic and metal - A method is disclosed for mechanically bonding a metal component to a ceramic material, comprising providing a metal component comprising an anchor material attached to at least a first portion of one surface of the metal component; providing a ceramic material having a first surface and a second surface, wherein the ceramic material defines at least one conduit extending from the first surface to the second surface, wherein the at least one conduit has a first open end defined by the first surface, a second open end defined by the second surface, a continuous sidewall and a cross sectional area; positioning the ceramic material such that at least a portion of the at least one conduit is in overlying registration with at least a portion of the anchor material; and applying a bonding agent into at least a portion of the at least one conduit.06-04-2009
20090233112MULTILAYER ZINC OXIDE VARISTOR - Enclosed is a multilayer zinc oxide (ZnO) varistor having a body portion, internal electrodes extending from both sides to the interior of the body portion respectively, and terminal electrodes disposed at both sides of the body portion. The multilayer zinc oxide is characterized in that: the components of said body portion include at least 90 mole % ZnO, 0.1 to 5.0 mole % antimony oxide functional additives, 0.01 to 1.0 mole % praseodymium oxide functional additives, and 0.01 to 10.0 wt. % glass; the sum amount of these metal oxides is less than 99.95 mole %.09-17-2009
20100028699METAL-CERAMIC COMPOSITE WITH GOOD ADHESION AND METHOD FOR ITS PRODUCTION - The invention relates to the field of material sciences and relates to a metal-ceramic composite with good adhesive strength, such as can be used, for example, for forming tools or cutting tools. The object of the present invention lies in the disclosure of a metal-ceramic composite with good adhesive strength which has a strong and durable bond between ceramic and metal. The object is attained with a metal-ceramic composite with good adhesive strength, comprising a metal component and a ceramic component and which are connected to one another by adhesive force or by adhesive force and in a non-positive manner, wherein silicon, beryllium, titanium, chromium, nickel, manganese, hafnium, vanadium, zirconium, aluminum and/or the organic compounds thereof is present in the area of the connection surfaces and wherein the components have been processed as a greenbody to form a composite and jointly sintered. The object is further attained through a method in which at least respectively one metal component and ceramic component are connected as a total greenbody and jointly subjected to a temperature treatment, at least for sintering the ceramic components.02-04-2010
20100098961Thermal barrier coatings using intermediate TCE nanocomposites - An intermediate thermal expansion coefficient coating including an NiCoCrAly alloy. The coating contains nanoparticles of the alloy and alumina. A nanocomposite coating is placed on metals to protect them from high gas temperatures by providing thermal insulation. The nanocomposite coating includes a bond coating, an intermediate thermal expansion coefficient coating, and a ceramic top coat. The intermediate thermal expansion coefficient coating comprises a NiCoCrAly alloy and allumina nanoparticles and has a ceramic top coat which is based on zirconi or high purity alumina.04-22-2010
20100159262DURABLE THERMAL BARRIER COATING COMPOSITIONS, COATED ARTICLES, AND COATING METHODS - A composition useful as a thermal barrier coating on a superalloy substrate intended for use in hostile thermal environments. The coating comprises zirconia stabilized in a predominately tetragonal phase. The composition includes a ceramic component consisting essentially of zirconia (ZrO2) or a combination of zirconia and hafnia (HfO2) and a stabilizer component comprising, in combination, a first co-stabilizer selected from YbO1.5, HoO1.5, ErO1.5, TmO1.5, LuO1.5, and combinations thereof, and optionally YO1.5, a second co-stabilizer selected from TiO2, PdO2, VO2, GeO2, and combinations thereof, and a third co-stabilizer comprising TaO2.5. The stabilizer component is present in an amount effective to achieve the predominantly tetragonal phase in the coating.06-24-2010
20100167072ELECTROCOAT COMPOSITION AND PROCESS REPLACING PHOSPHATE PRETREATMENT - An aqueous coating composition comprises a metal oxide selected from the group consisting of bismuth oxide, vanadium oxide, manganese oxide, cobalt oxide, zinc oxide, strontium oxide, yttrium oxide, molybdenum oxide, zirconium oxide, lanthanum oxide, oxides of the lanthanide series of elements and combinations thereof and an electrodepositable binder, the binder comprising (a) a phosphorous-containing group07-01-2010
20100233497CERAMIC MATERIAL WITH A COMPOSITION WHICH IS MATCHED TO A COEFFICIENT OF THERMAL EXPANSION SPECIFIED BY A METALLIC MATERIAL - A non-conductive ceramic material contains a base ceramic material and at least one other ceramic material having a lower coefficient of thermal expansion than that of the base material so that the coefficient of thermal expansion of the non-conductive ceramic material is identical to that of a metallic material to which it will be matched. Methods of making and using same are disclosed.09-16-2010
20110076505METALLIC MATERIAL AND METHOD OF MANUFACTURING THE SAME - A metallic material is provided that is superior to an iron-based metallic material in all of adhesion, heat resistance, electrical conductivity, and corrosion resistance, and a method of manufacturing the metallic material is also provided. A metallic material is provided that includes an iron-based metallic material and an oxide layer formed on the surface of the iron-based metallic material. The oxide layer includes Fe and at least one kind of metal (A) selected from a group consisting of Zr, Ti, and Hf. There is also provided a method of manufacturing the metallic material.03-31-2011
20110177353METAL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE - A metal material of the present invention is composed of an underlying metal and a phosphate compound-based film which is disposed on the surface of the underlying metal and has a surface part, in which the surface part of the phosphate compound-based film contains Zr.07-21-2011
20110195261NON GAMMA-PHASE CUBIC AlCrO - The present invention relates to a coating for workpieces with at least one layer, the at least one layer comprising metal components represented by AlxCr1−x wherein x is an atomic ratio meeting 0≦x≦0.84 and comprising non metallic components represented by O1−yZy where Z is at least one Element selected from the group N, B, C and 0≦y≦0.65, preferably y≦0.5 characterized in that the coating comprises at least partially a cubic non gamma Cr and oxide comprising phase in such a way that the x-ray diffraction pattern shows formation of cubic phase which is not the cubic phase of CrN.08-11-2011
20110300390Corrosion Resistant Metallate Compostions - A composition for application to a metal substrate comprising at least one metallate compound comprising hexafluorzirconate, zirconyl nitrate, and/or yttrium nitrate is provided. The composition may further comprise additives that promote corrosion resistance of the metal substrate, or the adhesion of subsequent coatings, such as one or more rare earth element salts; allontoin, polyvinylpyrrolidone, surfactants, and other additives and co-inhibitors. A metal substrate such as an aluminum or an aluminum alloy substrate coated with a metallate composition according to the present invention is also provided. A process for preparing a coating on a metal substrate to improve the corrosion resistance of the substrate or improve the adhesion of a subsequent coating is also provided. The process comprises treating the metal substrate with an aqueous solution comprising a metallate compound. The process may further comprise one or more pre-treating the substrate, coating the metal substrate with an oxidizing agent and/or coating the metal substrate with one or more rare earth element salts. A process for preparing the metallate coatings of the invention is also provided.12-08-2011
20120141811POWDER METAL COMPONENT IMPREGNATED WITH CERIA AND/OR YTTRIA AND METHOD OF MANUFACTURE - A powder metal component is made of compacted and sintered powder metal particles such as chromium-containing ferrous-based metal and is porous. Following sintering, the pores are impregnated with relatively smaller particles of ceria and/or yttria. The component is then heat treated and the presence of the impregnated ceria and/or yttria serve as nucleation sites for the formation of desirable oxides, such as chromium oxide, on the surface. The impregnated particles that lie below the protective oxide layer remain available throughout the life of the component in the event the original oxide layer becomes worn or damaged, wherein a renewed protective oxide is formed in such regions due to the presence of the impregnated particles.06-07-2012
20120196139THERMAL SPRAY COMPOSITE COATINGS FOR SEMICONDUCTOR APPLICATIONS - This invention relates to thermal spray composite coatings on a metal or non-metal substrate. The thermal spray composite coatings comprise (i) a ceramic composite coating undercoat layer having at least two ceramic material phases randomly and uniformly dispersed and/or spatially oriented throughout the ceramic composite coating, and (ii) a ceramic coating topcoat layer applied to the undercoat layer. At least a first ceramic material phase is present in the undercoat layer in an amount sufficient to provide corrosion resistance to the ceramic composite coating, and at least a second ceramic material phase is present in the undercoat layer in an amount sufficient to provide plasma erosion resistance to the ceramic composite coating. This invention also relates to methods of protecting metal and non-metal substrates by applying the thermal spray coatings. The composite coatings provide erosion and corrosion resistance at processing temperatures higher than conventional processing temperatures used in the semiconductor etch industry, e.g., greater than 100° C. The coatings are useful, for example, in the protection of semiconductor manufacturing equipment, e.g., integrated circuit, light emitting diode, display, and photovoltaic, internal chamber components, and electrostatic chuck manufacture.08-02-2012
20130122317Nanocrystalline Interlayer Coating For Increasing Service Life Of Thermal Barrier Coating on High Temperature Components - A coated substrate including a substrate having a surface, a bond coat proximate to the substrate surface, a yttrium stabilized zirconia (YSZ) thermal barrier layer opposite the substrate surface, and at least one interlayer disposed between the bond coat and the thermal barrier layer, wherein the interlayer contains an alloy having a nanocrystalline grain structure. A method for coating a substrate to be exposed to high in service temperatures and/or temperature cycles including depositing a bond coating on substrate surface, depositing at least one nanocrystalline interlayer on the bond coat opposite the substrate surface, and depositing a yttrium stabilized zirconia (YSZ) thermal barrier coating on the nanocrystalline interlayer opposite the bond coat, wherein the service life of the YSZ thermal barrier coating is extended relative to a substrate coated with the bond coating and the thermal barrier without the interlayer disposed therebetween.05-16-2013
20160076151Method of Depositing Titania on a Substrate and Composite Article - A method comprises rubbing a powder comprising titanium dioxide particles against a surface of an aluminum substrate to form a layer bonded to the surface of the aluminum substrate. The powder comprises titanium dioxide and is essentially free of organic particles. Composite articles preparable by the method are also disclosed.03-17-2016
428472100 Formed in situ 3
20090258242ARTICLE OF MANUFACTURE AND PROCESS FOR ANODICALLY COATING AN ALUMINUM SUBSTRATE WITH CERAMIC OXIDES PRIOR TO POLYTETRAFLUOROETHYLENE OR SILICONE COATING - An article of manufacture and a process for making the article by the anodization of aluminum and aluminum alloy workpieces to provide corrosion-, heat- and abrasion-resistant ceramic coatings comprising titanium and/or zirconium oxides, and the subsequent coating of the anodized workpiece with polytetrafluoroethylene (“PTFE”) or silicone containing coatings. The invention is especially useful for forming longer life PTFE coatings on aluminum substrates by pre-coating the substrate with an anodized layer of titanium and/or zirconium oxide that provides excellent corrosion-, heat- and abrasion-resistance in a hard yet flexible film.10-15-2009
20120282478METHOD AND APPARATUS FOR THE MULTI-LAYER AND MULTI-COMPONENT COATING OF THIN FILMS ON SUBSTRATES, AND MULTI-LAYER AND MULTI-COMPONENT COATINGS - The present invention pertains to a process for depositing multi-component and nanostructured thin films. Various parameters are monitored during the process to produce the structure of the thin films, on one hand the residence time of the gas mixture in the reactor is controlled by the pumping rate, on the other side to generate the plasma direct current (DC) or radio frequency (RF) sources are used, plus the combination of three unbalanced magnetrons allows alternative emission of elements that make up the multi-component and nanostructured films. The process is monitored by an optical emission spectrometer (EOE) and a Langmuir probe (SL), the EOE can follow the emission corresponding to the electronic transitions of atoms and molecules in the plasma. Emissions occur in the visible, infrared and ultraviolet domains. The relationships between spectral networks of different elements have been identified that ensure structural characteristics of thin films. Through SL, operating conditions have been identified by measuring the electron temperature and measuring the density of electrons. It was decided in the prototype to make this measurement at significantly important points in the process.11-08-2012
20190143416METHOD FOR FABRICATION OF A COMPOSITE PART05-16-2019

Patent applications in class Refractory metal salt or oxide

Patent applications in all subclasses Refractory metal salt or oxide

Website © 2025 Advameg, Inc.