Class / Patent application number | Description | Number of patent applications / Date published |
428640500 | Tellurium containing | 30 |
20080220197 | PHASE-CHANGE RECORDING FILM WITH STABLE CRYSTALLIZATION RATE, TARGET AND PROCESS FOR PRODUCING THE PHASE-CHANGE RECORDING FILM - A phase-change recording film with stable crystallization rate and a composite target for producing the film are composed of 10 to 50 atomic percent of phase-change material containing Te or Sb and 50 to 90 atomic percent of dielectric material. Another target for producing the film is composed of dielectric material and a phase-change material containing Te or Sb attached to the dielectric material. A co-sputtering process for producing the film uses a target made of dielectric material and a target made of phase-change material containing Te or Sb to co-sputter. Because the crystallization rate of the phase-change recording film does not change as the thickness of phase-change recording film varies, manufacturing the phase-change recording film does not require to be precisely controlled unduly. | 09-11-2008 |
20080260985 | Information-recording medium - An information-recording medium includes first and second recording layers each of which is formed of a phase-change material containing Bi, Ge, and Te, wherein the first recording layer is arranged nearer to a light-incident side of the laser beam than the second recording layer; a composition of Bi, Ge, and Te contained in the second recording layer is within a composition range surrounded by composition points B | 10-23-2008 |
20080305293 | Two-Layered Optical Recording Medium - A two-layered optical recording medium which includes a first substrate, a first information layer, a second information layer, and a second substrate formed in this order as viewed from the light beam irradiation side, the first information layer includes a first lower dielectric layer, a first recording layer, a first upper dielectric layer, a first reflective layer, and an inorganic dielectric layer formed in this order as viewed from the light beam irradiation side; the second information layer includes a second lower dielectric layer, a second recording layer, a second upper dielectric layer, and a second reflective layer formed in this order as viewed from the light beam irradiation side; and the first reflective layer is made of Cu with a content of 99.8% by mass to 95.0% by mass and one or more metals selected from Ta, Nb, Zr, Ni, Cr, Ge, Au, and Mo. | 12-11-2008 |
20090098329 | DUAL-LAYERED OPTICAL DISC - An exemplary dual-layered optical disc includes a transparent cover layer, a first recording layer, a space layer, a second recording layer, a reflective film, and a substrate, all of which are deposited one upon the other in this order. The first recording layer includes a re-recordable material. The second record layer includes a write-once material. Therefore, the dual-layered optical disc supplies two different types of recording layers. | 04-16-2009 |
20090258178 | INFORMATION RECORDING MEDIUM, ITS MANUFACTURING METHOD, AND SPUTTERING TARGET FOR FORMING INFORMATION RECORDING MEDIUM - A write-once information recording medium having a high recording sensitivity and reliability with respect to long-term storage is provided. The information recording medium has a recording layer on a substrate, to which information can be recorded and from which information can be reproduced by irradiating the recording layer with laser light or applying electrical energy to the recording layer. The recording layer contains, as its primary components, TeO | 10-15-2009 |
20090263613 | OPTICAL INFORMATION RECORDING MEDIUM AND METHOD FOR MANUFACTURING THE SAME - An optical information recording medium that can simultaneously achieve both a high transmittance and high signal quality of an information layer, improve the reliability of long-term conservation, and reduce the manufacturing cost, and a manufacturing method thereof are provided. To achieve this, according to the present invention, in an optical information recording medium comprising at least one information layer on a substrate, at least one of the information layers has a recording layer and a dielectric layer, the recording layer contains Te, O, and M (M is one or a plurality of elements selected from Au, Pd, and Pt) as major components, the dielectric layer has a thermal conductivity of 0.01 W/K·cm or more, and the dielectric layer has an extinction coefficient of 0 through 1.0 inclusive. | 10-22-2009 |
20090269542 | OPTICAL RECORDING MEDIUM - An object of the invention is to write-once record and reproduce, or only reproduce, a mark smaller than the resolution limit; obtain a high level of reproduction performance (CNR and the like); and realize a high level of reproduction durability. In the invention, between a signal reproducing functional layer composed of Sb or Te and a protecting layer there is introduced a thermally stable diffusion preventing layer, and thereby reactions between the signal reproducing functional layer and the protecting layer due to increased temperature can be prevented or suppressed while increasing reproduction durability. | 10-29-2009 |
20090286037 | INFORMATION RECORDING MEDIUM, TARGET AND METHOD FOR MANUFACTURING OF INFORMATION RECORDING MEDIUM USING THE SAME - An information recording medium of the present invention includes a recording layer whose phase changes by irradiation with a laser beam or application of current. The recording layer contains, as its main component, a composite composed of Ge and Sb that are essential components, and Te that is an optional component. The composite has a composition within a region enclosed by: point (a) (35, 65, 0), point (b) (36.9, 60, 3.1), point (c) (3.2, 60, 36.8), and point (d) (5, 95, 0) in terms of a coordinate (Ge, Sb, Te)=(x, y, z) on the triangular coordinate shown in FIG. | 11-19-2009 |
20100047507 | Thin Film For Reflection Film Or For Semi-Transparent Reflection Film, Sputtering Target and Optical Recording Medium - The present invention provides a thin film for a reflection film or for a semi-transparent reflection film, which has at least one silver compound phase of nitride, oxide, complex oxide, nitroxide, carbide, sulfide, chloride, silicide, fluoride, boride, hydride, phosphide, selenide and telluride of silver, dispersed in a matrix formed of silver. The thin film according to the present invention keeps its reflectance without significant loss even after a long period of use, and can prolong the life of various devices which comprises the thin film as a reflection film, such as an optical recording medium and a display. The thin film can be also applied to a semi-reflective/semi-transparent film used in the optical recording medium. | 02-25-2010 |
20100068444 | DATA STORAGE CONTAINING CARBON AND METAL LAYERS - Optical information media containing a metal material layer and a carbon material layer are disclosed. The layering of the metal material layer and the carbon material layer are designed to reduce or eliminate problems associated with oxidation and berm formation during writing of data to the media. | 03-18-2010 |
20100092717 | OPTICAL RECORDING MEDIUM BASED ON A TELLURIUM AND ZINC ALLOY - The optical recording medium comprises an active layer made of inorganic material, presenting a front face for receiving an optical radiation during writing operations, and a rear face. The inorganic material is a tellurium and zinc alloy comprising an atomic percentage of between 60% and 70% of zinc and between 30% and 40% of tellurium. The alloy comprises preferably 65% of zinc and 35% of tellurium. The medium may comprise a semi-reflecting layer arranged on the front face of the active layer and/or an additional metal layer arranged on the rear face and/or a protective layer of polymer material on the rear face. Thus, writing powers, a mark resolution and a storage density corresponding to DVD format specifications may be achieved. | 04-15-2010 |
20100112268 | OPTICAL RECORDING MEDIUM - An optical recording medium is provided. The optical recording medium includes a first recording layer and a second recording layer. The first recording layer includes a compound in the form of M | 05-06-2010 |
20100151178 | INFORMATION RECORDING MEDIUM AND ITS PRODUCTION PROCESS - In each of at least two information layers ( | 06-17-2010 |
20100151179 | Optical Information Recording Medium, Method Of Manufacturing The Same, And Sputtering Target - An optical information recording medium ( | 06-17-2010 |
20100203280 | OPTICAL RECORDING MEDIUM - Disclosed herein is an optical recording medium, including: a substrate; and an information recording layer formed on the substrate, an information signal being recorded and reproduced in and from the information recording layer by radiation of a light; wherein the information recording layer includes a reflecting layer, a dielectric layer formed on the reflecting layer, and a recording layer formed on the dielectric layer, the dielectric layer includes a first dielectric layer and a second dielectric layer, and a thermal conductivity of the second dielectric layer located on the reflecting layer side is higher than that of the first dielectric layer located on the recording layer side. | 08-12-2010 |
20100209653 | OPTICAL INFORMATION RECORDING MEDIUM - An optical information recording medium includes: a supporting substrate; a light-transmitting protective layer which becomes a layer on the incident side of recording and reproducing laser light; and an information recording layer intervening between the supporting substrate and the light-transmitting protective layer, wherein the information recording layer includes a phase-change material layer, a dielectric layer and a metal layer in this order from the incident side of laser light; and the dielectric layer is constituted of, as a main component, (In | 08-19-2010 |
20100215892 | THIN FILM FOR REFLECTION FILM OR FOR SEMI-TRANSPARENT REFLECTION FILM, SPUTTERING TARGET AND OPTICAL RECORDING MEDIUM - A thin film for reflective film or semi-reflective film comprising a matrix of silver or silver alloy and, dispersed therein, a compound phase of at least one member selected from among aluminum, magnesium, tin, zinc, indium, titanium, zirconium, manganese and silicon nitrides, oxides, composite oxides, nitroxides, carbides, sulfides, chlorides, silicides (excluding silicon), fluorides, borides, hydrides, phosphides, selenides and tellurides. In this thin film, in addition to the above aluminum, etc., there may be dispersed at least one member selected from among silver, gallium, palladium and copper nitrides, oxides, composite oxides, nitroxides, carbides, sulfides, chlorides, silicides, fluorides, borides, hydrides, phosphides, selenides and tellurides. This thin film as deterioration of its reflectance is low even in long-term use can prolong the service life of various equipment having the thin film applied thereto, such as optical recording medium or display, and is also applicable to semi-reflective/semi-transmissive films for use in optical recording medium. | 08-26-2010 |
20100266804 | RECORDABLE OPTICAL STORAGE MEDIUM COMPRISING A SEMICONDUCTOR LAYER, AND RESPECTIVE MANUFACTURING METHOD - The recordable optical storage medium comprises a substrate layer, a data layer and a first and a second protection layer for the data layer, wherein the data layer comprises a semiconductor layer and a dopant layer with a doping material usable for doping the semiconductor layer. The semiconductor layer is in particular an intrinsic or essentially intrinsic semiconductor layer having a low reflectivity and the doping material of the dopant layer is selected such, that the reflectivity of the semiconductor layer is increased, when doping material of the dopant layer is diffused into the semiconductor layer | 10-21-2010 |
20100279053 | INFORMATION RECORDING MEDIUM AND METHOD FOR PRODUCING SAME, AND SPUTTERING TARGET - An information recording medium ( | 11-04-2010 |
20110020582 | INFORMATION RECORDING MEDIUM AND METHOD FOR PRODUCING THE SAME - An information recording medium ensuring high recording and erase function and excellent archival characteristic at a high linear velocity and over a wide range of linear velocities is provided. Such a medium is obtained by constructing a recording layer which has a composition that can generate phase change as a whole, of a first through an M-th constituent layers (wherein M is an integer of 2 or greater) which are stacked in a thickness direction, such that elemental compositions of contiguous an m-th constituent layer and a (m+1)th constituent layer are different from each other (wherein m is an integer and satisfies 1≦m≦M) assuming that the constituent layer located at an m-th position from a laser light incident side is the m-th constituent layer. In this information recording medium, at least one m-th constituent layer constituting the recording layer preferably includes at least one element selected from Te, Bi, Sb, Ge, In, Ga, Al, Sn, Pb, Se and Si. | 01-27-2011 |
20110123756 | INFORMATION RECORDING MEDIUM - An information recording medium ( | 05-26-2011 |
20120015133 | OPTICAL RECORDING MEDIUM - An optical recording medium includes an inorganic recording layer, a first protective layer provided on at least one surface of the inorganic recording layer and containing indium oxide, and a second protective layer provided so as to be adjacent to the first protective layer and containing titanium oxide, zirconium oxide, or tin oxide. | 01-19-2012 |
20120027980 | OPTICAL RECORDING MEDIUM - An optical recording medium includes a support substrate and a semi-transmissive recording layer. The semi-transmissive recording layer includes a first dielectric layer, a semi-transmissive semi-reflective layer, a second dielectric layer, a phase change recording material layer, and a third dielectric layer that are sequentially stacked in that order on the support substrate. The semi-transmissive semi-reflective layer contains silver. The second dielectric layer has a stack structure including a lower layer disposed at the interface on the semi-transmissive semi-reflective layer side and an upper layer disposed on the phase change recording material layer side of the lower layer. The lower layer is composed of indium oxide or a composite oxide of indium oxide and tin oxide. The upper layer is composed of tantalum oxide, gallium oxide, zirconium oxide, or niobium oxide. | 02-02-2012 |
20130337217 | INFORMATION RECORDING MEDIUM AND MANUFACTURING METHOD OF SAME - An information recording medium ( | 12-19-2013 |
20140322476 | OPTICAL RECORDING MEDIUM - An optical recording medium includes a recording layer including a reflective layer, two dielectric layers, and a phase-change recording layer. The phase-change recording layer-side dielectric layer of the two dielectric layers contains tantalum oxide or a composite oxide composed of silicon oxide, indium oxide, and zirconium oxide. The reflective layer-side dielectric layer of the two dielectric layers contains a composite oxide composed of silicon oxide, indium oxide, and zirconium oxide, a composite oxide composed of indium oxide and gallium oxide, or a composite oxide composed of zinc oxide and aluminum oxide. | 10-30-2014 |
428640600 | Protective layer | 5 |
20090029091 | OPTICAL RECORDING MEDIUM - An optical recording medium having first protective layer, recording layer, second protective layer, and reflective layer, wherein the recording layer contains a phase-change material represented by Formula (1″1), Formula (1-2), or Formula (1-3); the second protective layer contains one selected from zinc oxides, indium oxides, tin oxides, mixtures thereof, and materials Formula (2), and materials Formula (3). Formula (1″1): In | 01-29-2009 |
20090075015 | Limited Play Optical Discs - An optical disc having machine-readable, information encoding features includes a coating comprising a tellurapyrylium dye irreversibly bleachable by light. The dye, once bleached, is operative to change the index of refraction of the dye to inhibit reading of the information encoding features. | 03-19-2009 |
20090317581 | OPTICAL INFORMATION RECORDING MEDIUM - An optical information recording medium having the same recording volume as that of DVD-ROM is obtained which shows excellent characteristics at recording linear velocities within a range of twice linear velocity of DVD (about 8.2 m/s) to five times liner velocity of DVD (about 20.5 m/s) and excellent archival stability, by a construction including a transparent substrate, a recording layer which is formed on the substrate directly or with another layer interposed therebetween and can change in phase reversibly by a laser beam irradiation, wherein the composition of the recording layer is within a region bounded by composition points A(41.2, 7.4, 51.4), B(39.8, 10.5, 49.7), C(28.5, 21.7, 9.8), and D(30.6, 15.8, 53.6) in a triangular coordinate graph represented with a coordinate of (Ge, Sb—Bi, Te) and a Bi content in the recording layer is 4 atom % and more and less than 13 atom %. | 12-24-2009 |
20100112269 | OPTICAL RECORDING MEDIUM - An optical recording medium is provided. The optical recording medium includes a first recording layer and a second recording layer. The second recording layer includes a compound in the form of (Cu | 05-06-2010 |
20100189950 | Optical storage medium comprising a mask layer with a super resolution near field structure - The optical storage medium according to the invention uses a mask layer as a super resolution near field structure, which comprises a doped semiconductor material. The semiconductor material is n-doped particularly such that the reflectivity of the semiconductor material is increased, when irradiated with a laser beam. As a semiconductor material advantageously an indium alloy and as a doping material selenium or tellurium can be used. For the manufacturing of a respective optical storage medium a sputtering method for depositing the doped semiconductor material as the mask layer can be used, wherein the dopant is included already in the semiconductor sputtering target. | 07-29-2010 |