Class / Patent application number | Description | Number of patent applications / Date published |
428652000 | Next to Group VIII or IB metal-base component | 89 |
20080206591 | ADHERENDS WITH ENHANCED SURFACES - Metallic substrates have a surface for receiving application of an adhesive that includes a precipitated coating of metallic nanoparticulates. A first portion of the nanoparticulates is adhered to the surface and a second portion is in contact with the first portion. Also provided are adhered constructs. These constructs include a first substrate with a first surface that has a metallic precipitated coating of nanoparticulates. A first portion of the nanoparticulates is adhered to the surface and a second portion contacts the first portion. The constructs include a second substrate that has a second surface; and an adhesive is applied between the first surface and the second surface. | 08-28-2008 |
20080233427 | COMPONENT WITH A PLATINUM-ALUMINUM SUBSTRATE AREA, PLATINUM-ALUMINUM COATING AND PRODUCTION METHOD - A component having a platinum-aluminum substrate surface region which is formed in the area of the substrate surface of the component by diffusion of platinum and aluminum into the substrate surface and which contains platinum and aluminum as well as the constituents of the substrate composition. The integrated aluminum content and/or the integrated platinum content in the substrate area is less than 18 wt %. | 09-25-2008 |
20090186240 | NICKEL COAT CONTAINING PRECIOUS METALS - The present invention relates to a chemical nickel bath containing precious metal ions, a process for preparing a chemically deposited nickel coat containing a precious metal, the thus produced nickel coat, and the use thereof. | 07-23-2009 |
20090274927 | MULTILAYER ALLOY COATING FILM, HEAT-RESISTANT METAL MEMBER HAVING THE SAME, AND METHOD FOR PRODUCING MULTILAYER ALLOY COATING FILM - Disclosed is a multilayer alloy coating film capable of maintaining heat resistance, high-temperature oxidation resistance and creep resistance for a long time even in an ultra high temperature environment. The multilayer alloy coating film comprises a barrier layer formed on a base surface, and an aluminum reservoir layer formed on the barrier layer and composed of an alloy containing Al. The barrier layer comprises an inner sacrificial barrier layer composed of an alloy containing Re, an inner stabilization layer formed on the inner sacrificial barrier layer, a diffusion barrier layer formed on the inner stabilization layer and composed of an alloy containing Re, an outer stabilization layer formed on the diffusion barrier layer, and an outer sacrificial barrier layer formed on the outer stabilization layer and composed of an alloy containing Re. | 11-05-2009 |
20090324992 | Metal clad laminate and manufacturing method thereof - A metal clad laminate and a method of manufacturing the metal clad laminate are disclosed. The metal clad laminate can include a barrier layer made of a metallic material, a metal foil formed on one side of the barrier layer and coupled with the barrier layer by plating, and an insulator attached to the metal foil. By utilizing the metal clad laminate, the metal foil can be prevented from being perforated when processing a via hole using laser, so that a VOP structure may be implemented with a higher level of reliability. | 12-31-2009 |
20100159272 | Clad metal sheet and heat exchanger tubing etc. made therefrom - The exemplary embodiments relate to a multilayer aluminum alloy sheet material suitable for fabrication into coolant-conveying tubes, headers and the like used for heat exchangers, and to the tubes and headers, etc., fabricated from the sheet. The multi-layer metal sheet has a core layer of aluminum alloy having first and second sides. The first side has an interlayer made of a Zn-containing aluminum alloy positioned between a Zn-containing outer layer and the core layer. The alloy of the outer layer is more electronegative than the alloy of the interlayer. The alloy of the interlayer is preferably more electronegative than the alloy of the core layer. The first side clad in this way is the side intended for exposure to the coolant, and provides good resistance to corrosion and erosion. | 06-24-2010 |
20100304182 | ELECTRODEPOSITED METALLIC-MATERIALS COMPRISING COBALT - Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness chromium coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties. | 12-02-2010 |
20110123826 | Bonded Metal Components Having Uniform Thermal Conductivity Characteristics - Cookware having improved uniform heat transfer over the entire cross section thereof, the cookware formed from a multi-layered composite metal having a layer of stainless steel roll bonded at or near the core of the composite to act as a thermal barrier and provide more uniform heat distribution on the cook surface. The stainless layer is roll bonded to layers of aluminum which, in turn, is roll bonded to layers of stainless steel or aluminum or copper. The layer of stainless steel adjacent to the cooking range may be a ferromagnetic grade of stainless steel if induction-type heating is desired. The cookware may include a non-stick surface applied thereto. | 05-26-2011 |
20110200842 | STRESS-REDUCED NI-P/PD STACKS FOR BONDABLE WAFER SURFACES - The invention relates to a substrate having a bondable metal coating comprising, in this order, on an Al or Cu surface: (a) a Ni—P layer, (b) a Pd layer and, optionally, (c) an Au layer, wherein the thickness of the Ni—P layer (a) is 0.2 to 10 m, the thickness of the Pd layer (b) is 0.05 to 1.0 m and the thickness of the optional Au layer (c) is 0.01 to 0.5 m, and wherein the Ni—P layer (a) has a P content of 10.5 to 14 wt.-%. The deposit internal stress of the resulting Ni—P/Pd stack is not higher than 34.48 M−Pa (5,000 psi). Further, a process for the preparation of such a substrate is described. | 08-18-2011 |
20120088121 | BILAYER PROTECTION COATING AND RELATED METHOD - A turbine component having a protective bilayer coating thereon comprising: a superalloy substrate; and a bilayer protective coating applied to the substrate wherein the bilayer protective coating comprises a first inner layer of platinum and aluminum; and a second outer oxidation-resistant layer applied over the first inner layer, the second outer layer comprising an MCrAlX alloy where M is selected from Fe, Ni and Co, and where X is yttrium or another rare earth element. A method of improving oxidation resistance of a Ni or Co-based superalloy turbine component comprising: depositing a bilayer protective coating on a turbine component by depositing a first inner platinum-aluminum layer on a surface of the turbine component; and depositing a second outer layer comprising an MCrAlX alloy over the first inner layer, wherein M is a metal selected from Fe, Ni and Co, and X is yttrium or another rare earth element. | 04-12-2012 |
20120164480 | COATED ARTICLE AND METHOD FOR MAKING THE SAME - A coated article includes a substrate and an anti-corrosion layer formed on the substrate. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer is an aluminum-copper alloy layer implanted with manganese ions. The coated article has good corrosion resistance. | 06-28-2012 |
20130071686 | ALUMINUM COPPER CLAD MATERIAL - An aluminum copper clad material has excellent bonding strength and includes an aluminum layer and a copper layer that are bonded without a nickel layer interposed therebetween. | 03-21-2013 |
20130149550 | ALUMINUM ARTICLE AND METHOD FOR MAKING SAME - An aluminum article includes a substrate made of aluminum or aluminum alloy, a Ni—Cu—P alloy layer formed on the substrate, and a Ni—P alloy layer directly formed on the Ni—Cu—P alloy layer. The Ni—Cu—P alloy layer consists substantially of nickel, copper, and phosphorus and has a crystalline state. The Ni—P alloy layer consists substantially of nickel and phosphorus and has an amorphous structure. A method for making the aluminum article is also provided. | 06-13-2013 |
20140017512 | Button or Fastener Member of Copper-Plated Aluminum or Aluminum Alloy and Method of Production Thereof - A button or fastener member is provided wherein aluminum or an aluminum alloy is used as raw material, a first copper plating layer is formed directly over the entire surface of said raw material, and a second copper plating layer is formed directly on top of the first copper plating layer, with the aforementioned second copper plating layer being thicker than the aforementioned first copper plating layer. | 01-16-2014 |
20140072827 | ALLOY POWDER FOR OXIDATION-RESISTANT COATING, AND ALLOY MATERIAL FORMED OF THE POWDER AND EXCELLENT IN OXIDATION RESISTANCE CHARACTERISTICS - A mixed powder of an Ni—Al alloy and alumina is produced by heating a first mixed powder, which is prepared by mixing an Ni—Al mixed powder as prepared by mixing an Al powder with Ni in such a manner that Al therein could fall within a range of from 25 atomic % to 60 atomic %, and an alumina powder in a range of from 40% by mass to 60% by mass, in vacuum or in an inert gas atmosphere at a temperature falling within a range of from 600° C. to 1300° C. for at least 1 hour, and then grinding the resulting product. | 03-13-2014 |
20140308541 | BONDED BODY OF ALUMINUM ALLOY AND COPPER ALLOY, AND BONDING METHOD FOR SAME - A bonded body made of an aluminum alloy and a copper alloy and obtained by employing the aluminum alloy as one member to be bonded and the copper alloy as the other member to be bonded, the one bonded member and the other bonded member being bonded to each other through metallic connection, wherein the one bonded member is made of comprising an aluminum alloy containing Cu: 3.0 mass % to 8.0 mass % and Si: 0.1 mass % to 10 mass % with balance being Al and unavoidable inevitable impurities, and satisfying the chemical formula: C+2.4×S≧7.8 where C (mass %) is a Cu concentration and S (mass %) is a Si composition concentration is satisfied, and the other bonded member comprises a copper alloy having a higher solidus temperature than the one bonded member. A bonding method for the bonded body is provided. | 10-16-2014 |
20150056467 | Method for Producing a Nickel Aluminide Coating on a Metal Substrate, and Part having One Such Coating - The invention relates to a method for producing a nickel aluminide coating on a metal substrate. Said method includes the following steps: a) coating the substrate with a nickel deposit; b) applying an aluminum sheet onto the nickel deposit from step a) so as to form an assembly made up of the substrate coated with the nickel deposit and the aluminum sheet; and c) subjecting said assembly to heat treatment at a temperature that is lower than the melting point of aluminum, and at a low pressure so as to induce a reaction between the aluminum and the nickel and thus form a β-NiAl nickel aluminide layer mounted on a nickel layer. The invention is particularly of use for protecting the materials used in turbines of aircraft engines. | 02-26-2015 |
20150086807 | ISOTHERMAL PROCESSED COPPER CLADDED ALUMINUM COMPOSITE - The present invention provides an isothermal processing method for making an isothermal processed copper clad aluminum composite comprising: providing an aluminum component and a copper component; cleaning the aluminum component and shape finishing the aluminum component; extruding the aluminum component into a core aluminum billet; cleaning the copper component; transforming the copper component into a copper cladding layer; cladding longitudinal and circumferential surfaces of the core aluminum billet with the copper cladding layer and molding the core aluminum billet and the copper cladding layer together to form a copper cladded aluminum billet; and transforming the copper cladded aluminum billet into an isothermal processed copper cladded aluminum composite through isothermal rolling and annealing. The present invention also provides an isothermal processed copper cladded aluminum composite and a system for manufacturing an isothermal processed copper cladded aluminum composite. | 03-26-2015 |
20160068966 | LASER CLADDING ALLOY FOR ALUMINUM INJECTION MOLDS - A number of variations may include a product that may include a substrate that may include an aluminum alloy and at least one surface and a coating that may include a metallic material deposited over the at least one surface via laser cladding. | 03-10-2016 |
428653000 | Fe | 70 |
20080206592 | Galvanized Stell-Sheet Without Spangle, Manufacturing Method Thereof and Device Used Therefor - A spangle-free, hot-dip galvanized steel sheet, and a method and device for manufacturing the same. The hot-dip galvanized steel sheet is characterized in that a solidified zinc crystal of hot-dip galvanized layer has an average crystalline texture particle diameter of 10 to 88 μm and there is no solidification traces of dendrites upon observing under a microscope at a magnification of 100×. The method comprises dipping a steel sheet in a bath of a zinc-coating solution containing 0.13 to 0.3% by weight of aluminum; air-wiping the steel sheet to remove an excess of the coating solution; spraying water or an aqueous solution on the air-wiped steel sheet, using a steel sheet temperature in the range of a hot-dip galvanization temperature to 419° C. as a spray initiation temperature and using a steel sheet temperature in the range of 417° C. to 415° C. as a spray completion temperature; passing sprayed liquid droplets of water or aqueous solution through a mesh-like high-voltage charged electrode which is electrically charged with a high voltage of −1 to −50 kV; and allowing the electrode-passed liquid droplets to be bound to the surface of the steel sheet and hereby being served as solidification nuclei of molten zinc. | 08-28-2008 |
20080206593 | MIG WELDED JOINT BETWEEN ALUMINUM AND STEEL MEMBERS AND MIG WELDING PROCESS - A MIG welded joint between aluminum and steel members is obtained by overlapping the aluminum member and the steel member each other and performing MIG welding using a filler wire made of a 4000 or 5000 series aluminum alloy on an end face of the overlapped aluminum member, wherein the aluminum member has a thickness P ranging from 0.5 to 2.0 mm, and the steel member has a thickness Q satisfying the following formula: 0.6≦Q/P≦0.8, whereby a penetration depth of the steel member is equal to or less than 5% of the thickness Q thereof. | 08-28-2008 |
20080206594 | MIG WELDED JOINT BETWEEN ALUMINUM AND STEEL MEMBERS AND MIG WELDING PROCESS - A MIG welded joint between aluminum and steel members is obtained by overlapping the aluminum member and the steel member each other and performing MIG welding using a filler wire made of a 4000 or 5000 series aluminum alloy on an end face of the overlapped aluminum member, wherein the aluminum member has a thickness P ranging from 0.5 to 2.0 mm, and the steel member has a thickness Q satisfying the following formula: 0.6≦Q/P≦0.8. | 08-28-2008 |
20080241582 | Multi-Ply Cookware With Copper-Aluminum-Stainless Steel - Multi-ply composite cookware consisting of different metal combinations to include the beauty of copper on the exterior coupled with its excellent heat distribution/conductivity properties within the interior to provide thermally efficient, durable and cosmetically pleasing cookware. In several embodiments of the present invention, a layer of silver is also preferably employed in the interior thereof between adjacent aluminum layers to further improve thermal conductivity. | 10-02-2008 |
20090017328 | FLUX-CORED WIRE FOR DIFFERENT-MATERIAL BONDING AND METHOD OF BONDING DIFFERENT MATERIALS - There are provided a flux cored wire for joining dissimilar materials with each other, capable of enhancing a bonding strength upon joining an aluminum-base material with a steel-base material, and excellent in bonding efficiency, a method for joining the dissimilar materials with each other, and a bonded joint obtained by the method. In particular, there is provided a method for joining dissimilar materials with each other, in the case of melt weld-bonding of high-strength dissimilar materials with each other, that is, the high-strength steel member with the high-strength 6000 series aluminum alloy member and in the case of the steel member being a galvanized steel member. In one mode, use is made of a flux cored wire wherein the interior of an aluminum alloy envelope is filled up with a flux, the flux has fluoride composition containing a given amount of AlF | 01-15-2009 |
20090053555 | High Corrosion Resistance Hot dip Galvanized Steel Material - The present invention provides a high corrosion resistance hot dip galvannealed steel material comprised of a Zn-based hot dip plated steel material achieving both a higher corrosion resistance of the plated layer itself by the added elements and sacrificial protection of iron metal by the plated layer or workability free of degradation caused of formation of intermetallic compounds by added elements, that is, a high corrosion resistance hot dip Zn plated steel material characterized in that an alloy plated layer containing Zn: 35 mass % or more, preferably 40 mass % or more, contains a non-equilibrium phase having a heat capacity by differential scanning calorimetry of 1 J/g or more. Furthermore, 5% or more, preferably 50% or more in terms of vol % is an amorphous phase. The alloy layer may contain, by mass %, Mg: 1 to 60% and Al: 0.07 to 59%, may further contain one or more elements selected from Cr, Mn, Fe, Co, Ni, and Cu in a total of 0.1 to 10%, and may in addition contain one or more elements of 0.1 to 10% of La, 0.1 to 10% of Ce, 0.1 to 10% of Ca, 0.1 to 10% of Sn, 0.005 to 2% of P, and 0.02 to 7% of Si. | 02-26-2009 |
20090142616 | Hot-dip zn-al alloy-plated steel material with excellent bending workability and production method thereof - A hot-dip Zn—Al alloy-plated steel material ensuring high corrosion resistance and excellent bending workability of the plating layer, and a production method thereof are provided, that is, a hot-dip Zn—Al alloy-plated steel material with excellent bending workability, having a plating layer comprising, in terms of mass %, from 25 to 85% of Al, from 0.05 to 5% of one or both of Cr and Mn, and Si in an amount of 0.5 to 10% of the Al content, with the balance being Zn and unavoidable impurities, wherein the average spangle size on the plating surface is 0.5 mm or more; and a production method thereof. | 06-04-2009 |
20090186241 | Corrosion/Abrasion-Resistant Composite Cookware - A composite metal sheet ( | 07-23-2009 |
20090202859 | COMPOSITE COATED ZING-CONTAINING PLATED STEEL MATERIAL SUPERIOR IN CORROSION RESISTANCE, BLACKENING RESISTANCE, COATING ADHESION, AND ALKALI RESISTANCE - The present invention provides a composite coated zinc-containing plated steel material different from the plated steel materials treated by conventional chromate replacement technologies and superior in all of corrosion resistance, blackening resistance, coating adhesion, and alkali resistance. The composite coated zinc-containing plated steel material of the present invention is characterized by having a composite coating formed by coating and drying on the surface of a plated steel material a treatment solution containing a basic zirconium compound, vanadyl (VO | 08-13-2009 |
20090269611 | METAL-COATED STEEL STRIP - A steel strip having a coating of a metal alloy on at least one surface of the strip is disclosed. The metal alloy contains aluminium, zinc, silicon, and magnesium as the major elements. The metal alloy also contains strontium and/or calcium and unavoidable impurities and optionally other elements that are present as deliberate alloying elements. The concentration of magnesium is at least 1 wt. % and the concentration of (i) strontium or (ii) calcium or (iii) strontium and calcium is greater than 50 ppm. | 10-29-2009 |
20090291322 | Joined body and process for manufacturing the same - A joined body has a joint, which includes a first plate-shaped workpiece made of a first metal, and a second plate-shaped workpiece made of a second metal. The first plate-shaped workpiece, and the second plate-shaped workpiece are overlapped each other partially at least. The joint is made by means of friction stir joining by superimposing a rod-shaped body made of a third metal onto the overlapped first plate-shaped workpiece and second plate-shaped workpiece and then rotating it while pressing it onto the first plate-shaped workpiece. The joint further includes a coalesced section made of the first metal that coalesces on a surface of the second plate-shaped workpiece, a built-up section made of the third metal, and a composite section made of a mixture of the first metal and the third metal that integrates the coalesced section with the built-up section. | 11-26-2009 |
20100021760 | METAL-COATED STEEL STRIP - A steel strip having a coating of an aluminium-zinc-silicon alloy on at least one surface of the strip is disclosed. The strip is characterised in that the aluminium-zinc-silicon alloy contains less than 1.2 wt. % silicon and also contains magnesium. A method of forming a coating of an aluminium-zinc-silicon alloy on a steel strip is also disclosed. The method includes moving steel strip upwardly through a coating pot containing a bath of an aluminium-zinc-silicon alloy and having an opening in a bottom wall of the pot and forming a coating of the alloy on the strip. The method is characterized by minimizing residence time of steel strip in contact with the aluminium-zinc-silicon alloy bath in the pot. | 01-28-2010 |
20100075173 | METALLIC MULTILAYERED MATERIAL FOR USE AS A HEATING PLATE OR A COOLING PLATE - This invention describes a metallic multilayered material ( | 03-25-2010 |
20100086805 | PROCESS CHAMBER COMPONENT WITH LAYERED COATING AND METHOD - A substrate processing chamber component is capable of being exposed to an energized gas in a process chamber. The component has an underlying structure and first and second coating layers, the first coating layer comprising a first material having a first thermal expansion coefficient and a first surface having an average surface roughness of less than about 25 micrometers. The second coating layer is over the first surface of the first coating layer, the second coating layer comprising a second material having a second thermal expansion coefficient that differs by less than 5% from the first thermal expansion coefficient of the first material and a second surface having an average surface roughness of at least about 50 micrometers. | 04-08-2010 |
20100098969 | STRUCTURAL MEMBER OF DIFFERENT MATERIALS - The invention provides a structural member of different materials having no different-material-bonded part between aluminum alloy material and steel material to be assembled. The structural member of different materials comprised of steel and aluminum alloy includes a first structural member including steel, and a second structural member having a part including steel and a part including aluminum alloy, the part including steel and the part including aluminum alloy being bonded by different-material bonding. The first structural member and the second structural member are bonded together only by bonding of steels between the part including steel of the second structural member and the first structural member. | 04-22-2010 |
20100159273 | Method and Apparatus for Forming a Layered Metal Structure with an Anodized Surface - Methods and apparatus for forming a multi-layered metal structure that includes an anodized surface are disclosed. According to one aspect, a housing arrangement can include a stainless steel layer and at least a first layer. The first layer can have a first bonding surface and a first exterior surface. The first bonding surface can be substantially bonded in direct contact with the stainless steel layer, and the first exterior surface can be an exterior of the housing arrangement. The first exterior surface is an anodized surface. In one embodiment, the first layer can be formed from an anodizable material such as aluminum, titanium, niobium, or tantalum. | 06-24-2010 |
20100159274 | FRICTION-WELDED ASSEMBLY WITH INTERLOCKING FEATURE AND METHOD FOR FORMING THE ASSEMBLY - A welded assembly includes a weld joint formed via a spin welding process. A disc receives a cylinder prior to spin welding, with the disc having a circumferential groove undercutting or defining an annular shelf. An interlocking feature retaining the cylinder and disc is formed between a flow pattern of the cylinder and the annular shelf upon cooling of molten flash in the groove underneath the annular shelf. Teeth can be formed integrally with the disc to provide a torsional interlocking feature between the disc and cylinder. A method for forming a weld joint between a plastic cylinder and disc includes providing the disc with a circumferential groove forming an annular shelf, and rotating the cylinder with respect to the disc under an axial force to thereby form an outflow of molten flash. The flash forms an interlocking feature when cooled after flowing into the groove underneath the shelf | 06-24-2010 |
20100203357 | AL-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBERS OF MOTORCYCLES EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND THE MEMBERS - Provided is an Al-plated steel sheet for motorcycle exhaust gas passageway members excellent in high-temperature strength and red scale resistance, which is produced by dipping a substrate steel sheet comprising, in terms of % by mass, at most 0.02% of C, at most 2% of Si, at most 2% of Mn, from 5 to 25% of Cr, from more than 0.1 to 1% of Nb, at most 0.3% of Ti, at most 0.02% of N, and optionally at least one of at most 0.6% of Ni, at most 0.2% of Al, at most 3% of Mo, at most 3% of Cu, at most 3% of W, at most 0.5% of V, at most 0.5% of Co and at most 0.01% of B, with a balance of Fe and inevitable impurities, in a hot-dip Al-base plating bath to thereby form a hot-dip plating layer having a mean thickness of from 3 to 20 μm on the surface thereof. | 08-12-2010 |
20100221572 | STEEL, FOR HOT FORMING OR QUENCHING IN A TOOL, HAVING IMPROVED DUCTILITY - The invention relates to a steel part, the composition of the steel of which comprises, the contents being expressed by weight: 0.040%≦C≦0.100%; 0.80%≦Mn≦2.00%; Si≦0.30%; S≦0.005%; P≦0.030%; 0.010% S≦Al≦0.070%; 0.015%≦Nb≦0.100%; 0.030% Ti≦0.080%; N≦0.009%; Cu≦0.100%; Ni≦0.100%; Cr≦0.100%; Mo≦0.100%; and Ca≦0.006%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the microstructure of the steel consisting of at least 75% equiaxed ferrite, martensite in an amount not less than 5% but not exceeding 20%, and bainite in an amount not exceeding 10%. | 09-02-2010 |
20100221573 | PROCESS FOR MANUFACTURING STEEL SHEET HAVING HIGH TENSILE STRENGTH AND DUCTILITY CHARACTERISTICS, AND SHEET THUS PRODUCED - The invention relates to a hot-rolled steel sheet having a tensile strength greater than 800 MPa and an elongation at break greater than 10%, the composition of which comprises, the contents being expressed by weight: 0.050%≦C≦0.090%, 1%≦Mn≦2%, 0.015%≦Al≦0.050%, 0.1%≦Si≦0.3%, 0.10%≦Mo≦0.40%, S≦0.010%, P≦0.025%, 0.003%≦N≦0.009%, 0.12%≦V≦0.22%, Ti≦0.005%, Nb≦0.020% and, optionally, Cr≦0.45%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the microstructure of the sheet or the part comprising, as a surface fraction, at least 80% upper bainite, the possible complement consisting of lower bainite, martensite and residual austenite, the sum of the martensite and residual austenite contents being less than 5%. | 09-02-2010 |
20100255339 | PLATED ALUMINUM PRODUCT - A technique for using an iron plating for coating an aluminum product that results in adequate durability. An aluminum piston ( | 10-07-2010 |
20110052936 | METAL-COATED STEEL STRIP - An Al—Zn—Si—Mg alloy coated strip that has Mg | 03-03-2011 |
20110059335 | Composite Tube - A composite tube having a corrosion resistant member and a load-bearing member is provided. The corrosion resistant member is a Cu—Al alloy and has a wall thickness of at least 0.5 mm, while the load-bearing member is a Fe, Ni or Co based alloy having a wall thickness of at least 1 mm. The composite tube can be manufactured by conventional means like extrusion, rolling, welding etc. The composite tube is to be used in environments where the risk of metal dusting, coking or carburization is high | 03-10-2011 |
20110159314 | QUENCHABLE STEEL SHEET HAVING HIGH HOT PRESS WORKABILITY AND METHOD OF MANUFACTURING THE SAME - The quenchable steel sheet has an alloy composition including carbon (C) in an amount of 0.15˜0.30 wt %, silicon (Si) in an amount of 0.05˜0.5 wt %, manganese (Mn) in an amount of 1.0˜2.0 wt %, boron (B) in an amount of 0.0005˜0.0040 wt %, sulfur (S) in an amount of 0.003 wt % or less, phosphorus (P) in an amount of 0.012 wt % or less, one or more selected from among calcium (Ca) in an amount of 0.0010˜0.0040 wt % and copper (Cu) in an amount of 0.05˜1.0 wt %, two or more selected from among cobalt (Co), zirconium (Zr) and antimony (Sb), and iron (Fe). Alloy elements are controlled to increasing hot ductility and enabling pressing at 600˜900° C. so that a tensile strength of 1400 MPa or more and an elongation of 8% or more are obtained after pressing. | 06-30-2011 |
20110165436 | COATED STEEL STRIPS, METHODS OF MAKING THE SAME, METHODS OF USING THE SAME, STAMPING BLANKS PREPARED FROM THE SAME, STAMPED PRODUCTS PREPARED FROM THE SAME, AND ARTICLES OF MANUFACTURE WHICH CONTAIN SUCH A STAMPED PRODUCT - Coated steel having a well defined and uniform thickness is useful and advantageous for preparing products by hot stamping. Products prepared by hot stamping such a steel are particularly advantageous when subjected to a subsequent spot welding step. | 07-07-2011 |
20110274945 | HOT-DIP Zn-A1-Mg-Si-cR ALLOY-COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE - The present invention provides a Zn—Al—Mg—Cr alloy-coated steel material with excellent corrosion resistance. A molten Zn—Al—Mg—Si—Cr alloy-coated steel material which is a steel material having a Zn—Al—Mg—Cr alloy coating layer and which has an interfacial alloy layer formed of coating layer components and Fe at the coating layer-steel material interface, wherein the interfacial alloy layer has a multilayer structure consisting of an Al—Fe-based alloy layer and an Al—Fe—Si-based alloy layer and furthermore, the Al—Fe—Si-based alloy layer contains Cr. | 11-10-2011 |
20110300407 | Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof - Provided are a coated steel sheet, a hot press formed product using the steel sheet, and a producing method thereof. Conditions for hot-dip coating bath are optimized when an aluminum-coated steel sheet is produced using a hot rolled steel sheet or a cold rolled steel sheet, and processes are controlled during production of a hot press formed product from the steel sheet, thereby forming a coating layer having a high ratio of (Fe | 12-08-2011 |
20120088122 | GALVANIZED STEEL SHEET - A galvanized steel sheet includes a surface-treatment film with 50 to 1200 mg/m | 04-12-2012 |
20120121930 | Metallic Composite Comprising a Load-Bearing Member and a Corrosion Resistant Lager - A composite material intended for components used in corrosive environments, wherein said material comprises a corrosion-resistant part and a load-bearing part, wherein said parts are disposed adjacent one another, wherein the corrosion-resistant part is a copper-aluminium alloy (Cu/Al) and wherein the load-bearing part is comprised of an iron-based (Fe), a nickel-based (Ni) or a cobalt-based (Co) alloy. The invention is characterized in that the diffusion barrier is disposed between the corrosion-resistant part and the load-bearing part, and in that the diffusion barrier contains one of the substances chromium (Cr) or iron (Fe) or iron (Fe) that contains one of the alloying substances chromium (Cr) or carbon (C). | 05-17-2012 |
20120121931 | STEEL MATERIAL FOR DISSIMILAR METAL JOINING, JOINED BODY OF DISSIMILAR METALS AND PROCESS FOR JOINING DISSIMILAR METAL MATERIALS - A joined body of dissimilar metals which is produced by joining a steel material and an aluminum alloy material, wherein the steel material to be joined has a specific composition and is specified in the compositions of outer surface oxide layer and inner oxide layer and the aluminum alloy material to be joined is an Al—Mg-base or Al—Zn—Mg-base aluminum alloy having a specific composition. In the joined body of dissimilar metals, a content of Fe at a joint interface on the aluminum alloy material side is regulated, and a reaction layer of Fe and Al is formed at the joint interface of the joined body of dissimilar metals. The joined body of dissimilar metals exhibits high joint strength. | 05-17-2012 |
20120135271 | HOT DIP AL-ZN COATED STEEL SHEET - A hot dip Al—Zn coated steel sheet exhibits excellent corrosion resistance. The Al content in a coated film is 20-95% by mass. The Ca content is 0.01-10% by mass. Alternatively, the total content of Ca and Mg is 0.01-10% by mass. Preferably, the coated film includes an upper layer and an alloy phase present at the interface to a substrate steel sheet, and Ca or Ca and Mg are contained primarily in the upper layer. Also preferably, the Ca or Ca and Mg include an intermetallic compound with at least one type selected from Zn, Al, and Si. If Ca or Ca and Mg are contained in the coated film, as described above, these elements are contained in corrosion products generated in a bonded portion and exert effects of stabilizing the corrosion products and retarding proceeding of corrosion thereafter. Then, as a result, the corrosion resistance is improved. | 05-31-2012 |
20120177946 | Zr-/Ti-Containing Phosphating Solution For Passivation of Metal Composite Surfaces - The invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations thereof, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates of the aluminum substrate with simultaneous passivation of the aluminum. The metallic materials, components and composite structures conversion treated in accordance with the underlying invention are used in automotive body construction, in shipbuilding, in construction and for the production of white goods. | 07-12-2012 |
20120219823 | GALVANIZED CARBON STEEL WITH STAINLESS STEEL-LIKE FINISH - A “faux stainless steel” may be produced by processing galvanized carbon steel through a temper mill using textured rolls to develop a “polished” type surface. The galvanized coating is not removed by abrasion but is compressed thereby providing a more uniform substrate than conventional polishing or brushing. The resulting strip may then be coated with an organic film to provide additional appearance and corrosion benefits including anti-fingerprint resistance. | 08-30-2012 |
20120295130 | HOT-DIP ALUMINUM ALLOY PLATED STEEL HAVING EXCELLENT SHEAR CUT EDGE CORROSION RESISTANCE AND PROCESSED PART CORROSION RESISTANCE, AND METHOD OF MANUFACTURING THE SAME - The hot-dip aluminum alloy plated steel has a base steel and a plated layer, in which the composition of the plated layer contains, by % by mass, Fe: 25% to 75%, Mg: 2% to 20%, and Ca: 0.02% to 2% with a remainder of Al and inevitable impurities, the plated layer contains one or both of an α-Mg phase and an Al | 11-22-2012 |
20130095345 | Hot Dip Al Coated Steel Sheet Excellent in Heat Black Discoloration Resistance and Method of Production of Same - In conventional Al coated steel sheet, with the Al coating as it is, black discoloration cannot be prevented at 550° C. or more. For this reason, post annealing is used to form a barrier layer and suppress the formation of Fe—Al intermetallic compounds. However, with this method, there were the problems that the steel sheet became poor in workability and, further, high temperature, long time heating was required, so there were problems from the workability, economy, and environmental aspect. The present invention provides steel sheet which has a heat black discoloration resistance even at a 550° C. or more high temperature without additional annealing after Al coating and further is excellent in workability. | 04-18-2013 |
20130136950 | COMPLEX METALLOGRAPHIC STRUCTURED HIGH STRENGTH STEEL AND METHOD OF MANUFACTURING - A multi-phase steel sheet having microstructure having in combination ferrite, martensite of between 3% and 65% by volume, and at least one microstructure selected from the group consisting of, bainite and retained austenite, and having fine complex precipitates selected from the group of TiC, NbC, TiN, NbN, (Ti.Nb)C, (Ti.Nb)N, and (Ti.Nb)(C.N) particles having at least 50% smaller than 20 nm in size, and physical properties having tensile strength greater than about 780 megapascals and at least one of the properties of elongation greater than about 10%, yield ratio greater than about 70%, and hole expansion ratio greater than about 50%. | 05-30-2013 |
20130209831 | High-Strength, Cold-Formable Steel and Flat Steel Product Made from Such a Steel - High-strength, cold-formable steel and a flat steel product produced from such a steel, in which an optimal combination of weldability and a low tendency towards delayed cracking is ensured along with good strength and hot and cold deformability. In order to achieve this, a steel according to the invention contains (in % by weight) C: 0.1-1.0%, Mn: 10-25%, Si: up to 0.5%, Al: 0.3-2%, Cr: 1.5-3.5%, S: <0.03%, P: <0.08%, N: <0.1%, Mo: <2%, B: <0.01%, Ni: <8%, Cu: <5%, Ca: up to 0.015%, at least one element from the group “V, Nb” with the following proviso: Nb: 0.01-0.5%, V: 0.01-0.5% and optionally Ti: 0.01-0.5% and iron and unavoidable, production-related impurities as the remainder. | 08-15-2013 |
20130236739 | HOT-DIP Al-Zn COATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME (AS AMENDED) - There is provided a hot-dip Al—Zn coated steel sheet that has a steel sheet containing Si and Mn as a base steel sheet and has excellent coating appearance and corrosion resistance. The Al—Zn coating layer has an Al content in the range of 20% to 95% by mass. The Al—Zn coating layer has a Ca content in the range of 0.01% to 10% by mass. Alternatively, the Ca and Mg content is in the range of 0.01% to 10% by mass. A steel sheet surface layer within 100 μm from a surface of the base steel sheet directly under the Al—Zn coating layer contains less than 0.060 g/m | 09-12-2013 |
20130273390 | METHOD FOR JOINING METALLIC MEMBERS, JOINT STRUCTURE AND BRAZING FILLER METAL - In joining an Fe-based metallic member comprising an Fe-based material and an Al-based metallic member comprising an Al-based material by a Zn-based brazing filler metal, a joined part of the Fe-based metallic member is heated at a temperature higher than a melting point of the Fe-based material. | 10-17-2013 |
20130280552 | Aluminum Coated Steel Sheet Having Excellent Oxidation Resistance and Heat Resistance - Provided is an aluminum coated steel sheet having excellent oxidation and heat resistance. The aluminum coated steel sheet includes an aluminum coating layer and an alloy layer. The aluminum coating layer is formed on a surface of a steel sheet which includes 0.001 to 0.015 wt % of carbon (C), 0.05 to 0.3 wt % of silicon (Si), 0.1 to 0.6 wt % of manganese (Mn), 0.01 to 0.05 wt % niobium (Nb), 0.01 wt % or less of phosphorus (P), 0.01 wt % or less of sulfur (S), 0.1 wt % or less of soluble aluminum (Al), 0.05 to 0.5 wt % of copper (Cu), 0.05 to 0.5 wt % nickel (Ni), 0.001 to 0.01 wt % of nitrogen (N), and the balance of Fe and inevitable impurities. The alloy layer includes an intermetallic compound at an interface between the steel sheet and the aluminum coating layer. | 10-24-2013 |
20130295409 | Austenitic, Lightweight, High-Strength Steel Sheet Having High Yield Ratio and Ductility, and Method for Producing the Same - Provided is an austenitic, lightweight, high-strength steel sheet having a high yield ratio and ductility and a method for producing the same, and more particularly, to a high-strength steel sheet for automotive interior panels, exterior panels, and structural parts, and a method for producing the steel sheet. The steel sheet may be a hot-rolled steel sheet, a cold-rolled steel sheet, or a plated steel sheet. The steel sheet includes, by weight %, C: 0.6% to 1.0%, Si: 0.1% to 2.5%, Mn: 10% to 15%, P: 0.02% or less, S: 0.015% or less, Al: 5% to 8%, Ti: 0.01% to 0.20%, N: 0.02% or less, and the balance of Fe and inevitable impurities, wherein the steel sheet has a specific gravity of 7.4 g/cm | 11-07-2013 |
20140004378 | STEEL SHEET FOR HOT STAMPED MEMBER AND METHOD OF PRODUCTION OF SAME | 01-02-2014 |
20140044987 | STEEL SHEET FOR HOT STAMPING MEMBER AND METHOD OF PRODUCING SAME - A steel sheet for a hot stamping member contains, as a chemical composition, 0.10 mass % to 0.35 mass % of C; 0.01 mass % to 1.0 mass % of Si; 0.3 mass % to 2.3 mass % of Mn; 0.01 mass % to 0.5 mass % of Al; limited to 0.03 mass % or less of P; limited to 0.02 mass % or less of S; limited to 0.1 mass % or less of N; and a balance consisting of Fe and unavoidable impurities, in which a standard deviation of diameters of iron carbides which are contained in a region from a surface to a ¼ thickness position of the steel sheet is less than or equal to 0.8 μm. | 02-13-2014 |
20140050941 | HIGH STRENGTH STEEL SHEET HAVING EXCELLENT FORMABILITY AND STABILITY OF MECHANICAL PROPERTIES AND METHOD FOR MANUFACTURING THE SAME - A high strength steel sheet including, by mass, C: 0.03% or more and 0.25% or less, Si: 0.4% or more and 2.5% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 2.5% or less, N: 0.008% or less, Si+Al: 1.0% or more, the balance being Fe and inevitable impurities. The area ratio of ferrite is 30% or more and 80% or less, the area ratio of martensite is 0% or more and 17% or less, the volume fraction of retained austenite is 8% or more, and the average grain size of retained austenite is 2 μm or less. | 02-20-2014 |
20140120366 | PLATED STEEL SHEET HAVING PLATED LAYER WITH EXCELLENT STABILITY FOR HOT PRESS MOLDING - The present invention relates to a plated steel sheet having a plated layer with excellent stability for hot press molding, and more specifically, to a plated steel sheet having a plated layer with excellent stability for hot press molding in which a LME (Liquid Metal Embrittlement) phenomenon caused by a zinc enrichment region included in the plated layer is suppressed during hot press molding. | 05-01-2014 |
20140186653 | TURBINE COMPONENT HAVING A LOW RESIDUAL STRESS FERROMAGNETIC DAMPING COATING - A turbine component having a low residual stress ferromagnetic damping coating. The ferromagnetic damping coating may include a ferromagnetic damping material applied in at least partially molten powder form, which may be directed at a surface of the substrate at an application velocity so that it causes partial plastic deformation of the surface while adhering to the surface of the substrate and solidifying in less than 3 seconds to create a ferromagnetic damping coating, resulting in a coated substrate. The ferromagnetic damping coating has a balanced coating residual stress, including a tensile quenching stress component and a compressive peening stress component. The balanced coating residual stress is within a range of ±50 MPa without having to subject the coated substrate to a high temperature annealing process. The resulting coated substrate exhibits a high damping capacity. | 07-03-2014 |
20140205857 | ALUMINUM PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE WITH RESPECT TO ALCOHOL OR MIXED GASOLINE OF SAME AND APPEARANCE AND METHOD OF PRODUCTION OF SAME - The present invention relates to aluminum plated steel sheet which does not require coating after plating and is high in production flexibility enabling application of conventional production processes as they are or exhibits excellent corrosion resistance to flex fuels and further is excellent in appearance and to fuel tanks characterized by being produced using the steel sheet. | 07-24-2014 |
20140248510 | DISSIMILAR-MATERIAL WELDED STRUCTURE AND WELDING METHOD THEREFOR - Friction stir welding is performed in the following manner. In the state in which a probe is rotated in a predetermined rotation direction, the probe is inserted into a flange of a rear sub frame, thereby starting friction stir welding to weld the flange of the rear sub frame and a flange of a front sub frame positioned on the inner side of the rear side of a vehicle. The probe is sequentially moved along the direction of arrow R1→arrow R2 (predetermined direction). When the probe reaches the end point of the direction indicated by arrow R2, the probe is inserted into the flange on the outer side across a protruding portion disposed between the flanges. Then, the probe is sequentially moved in the direction of arrow R4→arrow R5→arrow R6, which is opposite to the direction of arrow R1→arrow R2. | 09-04-2014 |
20140329108 | ALUMINIUM ALLOY - In a first aspect, the invention provides aluminium alloy comprising the following composition, all values in weight %: Si 0.25-1.5 Cu 0.3-1.5 Fe up to 0.5 Mn up to 0.1 all other elements including Mg being incidental and present (if at all) then in an amount less than or equal to 0.05 individually, and less than or equal to 0.15 in aggregate, the balance being aluminium. In a second aspect, the invention provides a composite aluminium sheet product comprising a core layer and at least one clad layer wherein the at least one clad layer is an aluminium alloy comprising the following composition, all values in weight %: Si 0.25-1.5 Cu 0.3-1.5 Fe up to 0.5 Mn up to 0.1 all other elements including Mg being incidental and present (if at all) then in an amount less than or equal to 0.05 individually, and less than or equal to 0.15 in aggregate, the balance being aluminium. In a third aspect, the invention provides a method of making a joined structure of a steel component and an aluminium component made from the alloy and/or the sheet product of the invention. | 11-06-2014 |
20140363694 | LOW DENSITY HIGH STRENGTH STEEL AND METHOD FOR PRODUCING SAID STEEL - A low density high strength steel sheet including 0.15% to 0.25% C, 2.5% to 4% Mn, 0.02% or less P, 0.015% or less S, 6% to 9% Al and 0.01% or less N, the balance being iron and inevitable impurities, wherein 1.7·(Mn—Al)+52.7·C is at least 3 and at most 4.5. A method of producing the low density and high strength steel sheet. | 12-11-2014 |
20140370329 | COLD ROLLED STEEL SHEET AND MANUFACTURING METHOD THEREOF - When the amount of C, the amount of Si and the amount of Mn are respectively represented by [C], [Si] and [Mn] in unit mass %, the cold rolled steel sheet satisfies a relationship of (5×[Si]+[Mn])/[C]>10, the metallographic structure contains, by area ratio, 40% to 90% of a ferrite and 10% to 60% of a martensite, further contains one or more of 10% or less of a pearlite by area ratio, 5% or less of a retained austenite by volume ratio and 20% or less of a bainite by area ratio, the hardness of the martensite measured using a nanoindenter satisfies H20/H10<1.10 and σHM0<20, and TS×λ representing the product of TS that is a tensile strength and λ that is a hole expansion ratio is 50000 MPa·% or more. | 12-18-2014 |
20140377583 | ALUMINUM OR ALUMINUM ALLOY-COATED STEEL MATERIAL AND METHOD OF MANUFACTURING THE SAME - An aluminum or aluminum alloy-coated steel material includes base steel; and a coating layer formed on a surface of the base steel and containing by mass % Mg: 6% to 10%, Si: 3% to 7%, Fe: 0.2% to 2%, Mn: 0.02% to 2%, and the balance as Al and incidental impurities, where-in the coating layer has pseudoternary eutectic microstructures of αAl—Mg | 12-25-2014 |
20150010775 | HOT STAMPED STEEL AND METHOD FOR PRODUCING HOT STAMPED STEEL - A hot stamped steel according to the present invention satisfies an expression of (5×[Si]+[Mn])/[C]>11 when [C] represents an amount of C by mass %, [Si] represents an amount of Si by mass %, and [Mn] represents an amount of Mn by mass %, a metallographic structure after hot stamping includes 40% to 90% of a ferrite and 10% to 60% of a martensite in an area fraction, a total of an area fraction of the ferrite and an area fraction of the martensite is 60% or more, a hardness of the martensite measured with a nanoindenter satisfies an H2/H1<1.10 and σHM<20, and TS×λ, which is a product of a tensile strength TS and a hole expansion ratio λ is 50000 MPa·% or more. | 01-08-2015 |
20150024237 | STEEL SHEET FOR HOT STAMPING, METHOD FOR PRODUCTION THEREOF, AND HOT STAMPING STEEL MATERIAL - A hot stamping steel material, which secures good hydrogen embrittlement resistance even when the steel sheet after hot stamping is subjected to processing leading to remaining of stress, such as piercing and which is easily practicable, wherein the steel sheet has the chemical composition of: C: 0.18 to 0.26%; Si: more than 0.02% and not more than 0.05%; Mn: 1.0 to 1.5%; P: 0.03% or less; S: 0.02% or less; Al: 0.001 to 0.5%; N: 0.1% or less; O: 0.001 to 0.02%; Cr: 0 to 2.0%; Mo: 0 to 1.0%; V: 0 to 0.5%; W: 0 to 0.5%; Ni: 0 to 5.0%; B: 0 to 0.01%; Ti: 0 to 0.5%; Nb: 0 to 0.5%; Cu: 0 to 1.0%; and balance: Fe and impurities, in terms of % by mass, the concentration of a Mn-containing inclusion is not less than 0.010% by mass and less than 0.25% by mass, and the number ratio of a Mn oxide to the inclusion having a maximum length of 1.0 to 4.0 μm is 10.0% or more. | 01-22-2015 |
20150050519 | HOT STAMPED STEEL AND METHOD FOR PRODUCING THE SAME - In a hot stamped steel, when [C] represents an amount of C (mass %), [Si] represents an amount of Si (mass %), and [Mn] represents an amount of Mn (mass %), an expression of 5×[Si]+[Mn])/[C]>10 is satisfied, a metallographic structure includes 80% or more of a martensite in an area fraction, and optionally, further includes one or more of 10% or less of a pearlite in an area fraction, 5% or less of a retained austenite in a volume ratio, 20% or less of a ferrite in an area fraction, and less than 20% of a bainite in an area fraction, TS×λ, which is a product of TS that is a tensile strength and λ that is a hole expansion ratio is 50000 MPa·% or more, and a hardness of the martensite measured with a nanoindenter satisfies H2/H1<1.10 and σHM<20. | 02-19-2015 |
20150079420 | STEEL FOR HOT FORMING - The steel for hot forming has the following composition in weight %:
| 03-19-2015 |
20150118516 | Composite Metal Alloy Material - An alloy composite material comprising an aluminum alloy layer and a thermal spray alloy layer of 20 to 40% Mn and 47 to 76% Fe by weight in overlaying contact with the aluminum alloy layer. An alloy composite material comprising an aluminum alloy layer or base layer and a thermal spray alloy layer of 20 to 40% Mn and 47 to 76% Fe by weight in overlaying contact with the aluminum alloy layer or base layer. The aluminum alloy layer or base layer and the thermal spray alloy layer have a mechanical compatibility to each other of 20-60 MPa as determined using tests specified by ASTM-C633 test. A process of thermal spraying comprising providing a base layer and a feed stock alloy of 20 to 40% Mn and 47 to 76% Fe and thermally spraying the feed stock alloy onto the base layer to form an alloy composite material. | 04-30-2015 |
20150132603 | METAL-COATED STEEL STRIP - A metallic coated steel strip includes a steel strip and a metallic coating on at least one side of the strip. The metallic coating includes an Al—Zn—Mg—Si overlay alloy layer and an intermediate alloy layer between the steel strip and the overlay alloy layer. The intermediate alloy layer has a composition of, by weight, 4.0-12.0% Zn, 6.0-17.0% Si, 20.0-40.0% Fe, 0.02-0.50% Mg, and balance Al and unavoidable impurities. | 05-14-2015 |
20150147589 | ROLLED STEEL THAT HARDENS BY MEANS OF PRECIPITATION AFTER HOT-FORMING AND/OR QUENCHING WITH A TOOL HAVING VERY HIGH STRENGTH AND DUCTILITY, AND METHOD FOR MANUFACTURING SAME - A rolled steel sheet or blank is provided, the composition of which comprises the elements listed below in per cent by weight: C≦0.1%; 0.5%≦Mn≦7%; 0.5%≦Si≦3.5%; 0.5%05-28-2015 | |
20150345361 | Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same - Provided is a ferritic stainless steel having excellent corrosion resistance against condensate, moldability, and high-temperature oxidation resistance, wherein the ferritic stainless steel is capable of being manufactured in an economically advantageous manner without adding expensive alloying elements. The ferritic stainless steel includes, by weight %, C: greater than 0 and 0.01% or less, Cr: 9 to 13%, Si: 0.5 to 1.0%, Mn: greater than 0 and 0.5% or less, P: greater than 0 and 0.035% or less, S: greater than 0 and 0.01% or less, Ti: 0.15 to 0.5%, N: greater than 0 and 0.01% or less, Sn: 0.05 to 0.5%, and the remainder is Fe and inevitable impurities, wherein Sn concentrated at the surface part of the stainless steel is 10 times or more than Sn concentrated at the base part. | 12-03-2015 |
20150354021 | A HIGH-STRENGTH HOT-ROLLED STEEL STRIP OR SHEET WITH EXCELLENT FORMABILITY AND FATIGUE PERFORMANCE AND A METHOD OF MANUFACTURING SAID STEEL STRIP OR SHEET - A high-strength hot-rolled steel strip or sheet with tensile strength of 570 to 870 MPa and an excellent combination of total elongation, stretch-flange formability, as well as fatigue resistance and to a method of manufacturing the steel strip or sheet and a chassis part made thereof. | 12-10-2015 |
20150360444 | METHOD FOR THE PRODUCTION OF AN ALUMINIZED PACKAGING STEEL - The invention concerns a method for the production of an aluminized packaging steel from a cold-rolled steel sheet made of an unalloyed or low-alloy steel with the following steps: a. heating of the steel sheet by electromagnetic induction at temperatures in the recrystallization range of the steel at a heating rate of more than 75 K/s, so as to anneal the steel sheet in a recrystallizing manner; b. dipping of the steel sheet annealed in a recrystallizing manner into a molten aluminum bath, so as to apply an aluminum layer on the steel sheet, wherein the steel sheet, upon being dipped into the aluminum bath, has a temperature of at least 700° C.; and c. pulling the steel sheet out of the aluminum bath and cooling the aluminized steel sheet at a cooling rate of at least 100 K/s. The aluminized steel sheets are characterized by a high degree of strength and elongation at break and exhibit excellent formation characteristics, for example, in drawing and wall ironing processes, for the production of two-part food and beverage cans or lids and can be used as substitute material for tin sheets. | 12-17-2015 |
20150361538 | HOT-DIP Al-Zn ALLOY COATED STEEL SHEET AND METHOD FOR PRODUCING SAME - Disclosed is a hot-dip Al—Zn alloy coated steel sheet having excellent anti-corrosion property after coating, and a method for producing the same. In the disclosure, the hot-dip Al—Zn alloy coated steel sheet has a hot-dip coating layer containing by mass %, Al: 25% to 90%, and at least one of Sn: 0.01% to 2.0%, In: 0.01% to 10%, and Bi: 0.01% to 2.0%. | 12-17-2015 |
20150367454 | THERMAL SPRAY PROCESSES AND ALLOYS FOR USE IN SAME - The present invention provides a method for coating an article comprising applying a thermal spray coating to the article; applying a brazing material to the article; and heating the brazing material to at least a brazing temperature of the brazing material to form a resultant coating on the article, wherein the resultant coating is characterized by at least partial metallurgical bonding or at least partial alloying between the thermal spray coating and the brazing material. | 12-24-2015 |
20150368777 | Metallic Flat Product Which is Subjected to Surface Finishing by Hot-Dip Coating and Which is Preferably Composed of Steel - A metallic flat product is disclosed which is subjected to surface finishing by hot-dip coating and which is preferably composed of steel. The metallic flat product includes a metallic alloy layer ( | 12-24-2015 |
20160002753 | ALUMINUM-ZINC PLATED STEEL SHEET AND METHOD FOR PRODUCING THE SAME - The aluminum-zinc plated steel sheet according to the present invention includes a plated steel sheet and a covering film that covers the plated steel sheet. The covering film contains a basic compound of transition metal other than cobalt and chromium, and metallic cobalt, or metallic cobalt and a cobalt compound. An amount of the covering film per one side is within a range of 0.01 to 0.8 g/m | 01-07-2016 |
20160047018 | ALUMINUM-ZINC-COATED STEEL SHEET (AS AMENDED) - An Al—Zn-coated steel sheet that suppresses blistering and offers good corrosion resistance after painting is provided. The Al—Zn-coated steel sheet includes an Al—Zn coating layer on a steel sheet surface, the Al—Zn coating layer including two layers which are an interfacial alloy layer present in an interface with a base steel sheet and an upper layer disposed on the interfacial alloy layer. The upper layer contains compounds of Si and Ca or Si, Ca, and Al, and Ca/Si mass % ratio in the upper layer is 0.72 to 1.4. The interfacial alloy layer contains an Fe—Al compound and/or an Fe—Al—Si compound. In the upper layer, Si content is 0.1 to 2.0 mass % and Ca content is 0.001 to 2.0 mass %. | 02-18-2016 |
20160186284 | AL-COATED STEEL SHEET HAVING EXCELLENT TOTAL REFLECTION CHARACTERISTICS AND CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING SAME - An Al-coated steel sheet contains a base steel sheet having on a surface thereof an Al-coated layer having an average thickness of 7 mm or more with an Al—Fe—Si based alloy layer intervening therebetween, a surface layer portion of the Al-coated layer extending from the surface thereof to a depth of 3 mm having an average Si concentration of 2.0% by mass or less, and preferably 1.3% by mass or less, and an area ratio of an Al—Fe based intermetallic compound phase occupying the surface of the Al-coated layer being 10% or less. The Al-coated steel sheet is improved in total reflection characteristics, corrosion resistance, and appearance after being subjected to an anodizing treatment. | 06-30-2016 |
20160194737 | STEEL SHEET COATED WITH ALUMINUM-MAGNESIUM, AND METHOD FOR MANUFACTURING SAME | 07-07-2016 |
20160376679 | HOT PRESS FORMED ARTICLE HAVING EXCELLENT DELAMINATION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME - An HPF molding member having a melted aluminum plating layer formed on the surface of a base steel sheet and excellent delamination resistance. The base steel sheet comprises: 0.18-0.25% by weight of C; 0.1-1.0% by weight of Si; 0.9-1.5% by weight of Mn; 0.03% by weight or less of P; 0.01% by weight or less of S; 0.01-0.05% by weight of Al; 0.05-0.5% by weight of Cr; 0.01-0.05% by weight of Ti; 0.001-0.005% by weight of B; 0.009% by weight or less of N; and the balance Fe and other impurities. The plating layer consists of a soft diffusion layer and a hard alloy layer, the hard alloy layer having a tau layer irregularly and non-continuously dispersed and distributed on the inside thereof at 10% or more of the entire area fraction. The difference in hardness between the alloy layer and the diffusion layer is 400 (Hv) or less. | 12-29-2016 |