Class / Patent application number | Description | Number of patent applications / Date published |
428566000 | Interconnected void structure (e.g., permeable, etc.) | 9 |
20080213611 | POROUS, NON-DEGRADABLE IMPLANT MADE BY POWDER MOLDING - The exemplary embodiment of the present invention are provided which relate to porous implants and methods for manufacture thereof which use powder molding techniques. For example, a suspension can be provided comprising a plurality of first particles of at least one organic polymer, a plurality of second particles of at least one metal-based material, and at least one solvent. The first and second particles can be substantially insoluble in the solvent. The suspension can be molded to form a green body comprising the first particles embedded in a matrix of compressed second particles. The first particles may be removed from the green body by thermally induced decomposition and/or evaporation. The green body can be sintered to form the implant. The removals of the first particles can be performed during sintering. | 09-04-2008 |
20090123774 | R-Fe-Beta POROUS MAGNET AND METHOD FOR PRODUCING THE SAME - An R—Fe—B based porous magnet according to the present invention has an aggregate structure of Nd | 05-14-2009 |
20110020662 | SINTERED POROUS METAL BODY AND A METHOD OF MANUFACTURING THE SAME - A sintered porous metal body, which has a sintered structure having a volumetric porosity of 10 to 90%, wherein there are at least one powder particles selected from the group consisting of dielectric material powders and semiconductor material powders that absorb energy of electromagnetic wave having a frequency of 300 MHz to 300 GHz among the metal crystalline particles constituting the sintered body, wherein the particles are substantially homogeneously dispersed in the sintered body, and wherein the metal particles are sintered to bond each other to be united to constitute pores. The invention discloses a method of manufacturing the sintered porous metal body. | 01-27-2011 |
20120231290 | METAL NANOSTRUCTURE AND PREPARATION THEREOF - Nanoporous polystyrene matrix can be fabricated from the self-assembly of degradable block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. Metal is deposited in nanopores of the PS matrix using the nanoporous PS as a template via electroless plating. After subsequent UV degradation of the PS matrix, metal in the nanopores remains, yielding a metal nanostructure. The metal nanostructure may be a gyroid nanostructure, helical nanostructure or columnar nanastructure. | 09-13-2012 |
20130011691 | POROUS TANTALUM USED FOR MEDICAL IMPLANTATION AND METHOD FOR PREPARING THE SAME - A porous tantalum used for medical implantation is provided, which includes a foam structure with three-dimensional interconnecting pores and produced by: mixing a solution made by organic binder and dispersant and tantalum powder to form tantalum slurry, casting the tantalum slurry into a organic foam body through impregnation until the pores of the organic foam body are filled, drying the impregnated organic foam body with the tantalum slurry to remove the dispersant, degreasing the dried organic foam body to separate the organic binder and the organic foam body from the dried tantalum slurry in a protective environment of inert gas, vacuum sintering the dried tantalum slurry to obtain a porous sintered body, and vacuum annealing then treating the porous sintered body with normal post-treatments to obtain the porous tantalum. Accordingly, the porous tantalum has well-distributed interconnecting pores and sintering neck structures resulting in good mechanical properties, and especially good ductility. | 01-10-2013 |
20130216849 | REINFORCED POROUS METAL FOIL AND PROCESS FOR PRODUCTION THEREOF - A reinforced porous metal foil is provided which comprises a porous portion comprising a two-dimensional network structure composed of a metal fiber; and a reinforced portion which is substantially non-porous or less porous than the porous portion, the reinforced portion being composed of the same metal the metal fiber and being continuous and integral with the porous portion. With such features, it possible to obtain a porous metal foil having superior properties at a low cost in a highly productive manner that is also suitable for continuous production. | 08-22-2013 |
20140011043 | METAL-BASED PARTICLE ASSEMBLY - There is provided a metal-based particle assembly comprising 30 or more metal-based particles separated from each other and disposed in two dimensions, the metal-based particles having an average particle diameter of 200 to 1600 nm, an average height of 55 to 500 nm, and an aspect ratio of 1 to 8, wherein the metal-based particle assembly has in an absorption spectrum for a visible light region a maximum wavelength of a peak at a longest side in wavelength, and the maximum wavelength shifts toward a shorter side in wavelength in a range of from 30 to 500 nm as compared with that of a prescribed reference metal-based particle assembly. The metal-based particle assembly can have in an absorption spectrum a maximum wavelength of a peak at a longest side in wavelength, and the maximum wavelength is in a range of from 350 to 550 nm. | 01-09-2014 |
20140037977 | METAL-BASED PARTICLE ASSEMBLY - There is provided a metal-based particle assembly comprising 30 or more metal-based particles separated from each other and disposed in two dimensions, the metal-based particles having an average particle diameter in a range of from 200 to 1600 nm, an average height in a range of from 55 to 500 nm, and an aspect ratio, as defined by a ratio of the average particle diameter to the average height, in a range of from 1 to 8, wherein the metal-based particles are disposed such that an average distance between adjacent metal-based particles may be in a range of from 1 to 150 nm. This metal-based particle assembly presents significantly intense plasmon resonance and also allows plasmon resonance to have an effect over a range extended to a significantly large distance. | 02-06-2014 |
20150017464 | POROUS SINTERED BODY AND PROCESS FOR PRODUCING POROUS SINTERED BODY | 01-15-2015 |