Class / Patent application number | Description | Number of patent applications / Date published |
428812000 | Magnetic layer composition | 25 |
20080206600 | Epitaxial ferromagnetic Ni3FeN - An epitaxial Ni | 08-28-2008 |
20080226949 | Damper for use in data storage applications - A damper for a data storage device having a viscoelastic material and a constraint material disposed on the viscoelastic material, the constraint material covers the sides of the viscoelastic material to reduce exposure of the viscoelastic material from debris in the surrounding environment. | 09-18-2008 |
20080268291 | MAGNETIC DEVICE, MAGNETIC RECORDING HEAD, AND MAGNETIC RECORDING APPARATUS - A magnetic device includes a first magnetic layer having at least one magnetic material layer, a second magnetic layer having at least one magnetic material layer, a first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, a third magnetic layer including a ferromagnetic material with a fixed magnetization direction, and a pair of electrodes. The pair of electrodes are operable to pass a current through a laminated body including the first and second magnetic layers, the nonmagnetic layer, and the third magnetic layer. | 10-30-2008 |
20090011281 | PERPENDICULAR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING APPARATUS - According to one embodiment, a perpendicular magnetic recording medium includes a substrate, and a first magnetic layer and a second magnetic layer formed on the substrate, in which supposing that, for the first and second magnetic layers, respectively, uniaxial magnetic anisotropy constants are Ku | 01-08-2009 |
20090053560 | MAGNETIC FILM, MAGNETIC HEAD OF HARD DISK DRIVE UNIT, AND SOLID DEVICE - In the magnetic film, projection of a magnetic pole, which is caused when a magnetic head is heated, can be restrained. The magnetic film can be applied to a magnetic head of a hard disk drive unit capable of recording data with high recording density. The magnetic film comprises: a first alloy film made of an alloy of iron (Fe) and platinum (Pt), or an alloy of iron (Fe), platinum (Pt) and other metal or metals; and a second alloy film directly layered on the first alloy film, the second alloy film made of an alloy of at least two metals selected from a group including iron (Fe), nickel (Ni) and cobalt (Co). Molar content of iron (Fe) in the first alloy film is 63-74 %. | 02-26-2009 |
20090098412 | Magnetic recording element, manufacturing method of the same and magnetic storage system using the same - A magnetic recording element includes a multilayer having a surface and a pair of electrodes. The multilayer has a first magnetic fixed layer whose magnetization is substantially fixed in a first direction substantially perpendicular to the surface. The multilayer also has a second magnetic fixed layer whose magnetization is substantially fixed in a second direction opposite to the first direction substantially perpendicular to the surface. A third magnetic layer is provided between the first and second magnetic layers. The direction of magnetization of the third ferromagnetic layer is variable. A first intermediate layer is provided between the first and the third magnetic layers. A second intermediate layer is provided between the second and the third magnetic layers. The pair of electrodes is capable of supplying an electric current flowing in a direction substantially perpendicular to the surface to the multilayer. The sectional area taken parallel to the surface at a thickness midpoint of the first magnetic layer is larger than that of the second magnetic layer. | 04-16-2009 |
20090162699 | Magnetic head for perpendicular magnetic recording and method of manufacturing same - A magnetic head includes: a pole layer; a pole-layer-encasing layer made of a nonmagnetic material and having a top surface and a groove that opens at the top surface; and a nonmagnetic layer that is made of a nonmagnetic metal material, disposed in the groove and forms a pole-layer-encasing section that accommodates the pole layer. A method of manufacturing the magnetic head includes the steps of: forming the pole-layer-encasing layer; forming an initial nonmagnetic layer in the groove of the pole-layer-encasing layer by physical vapor deposition, the initial nonmagnetic layer being intended to become the nonmagnetic layer later by undergoing etching of a surface thereof, etching the surface of the initial nonmagnetic layer by dry etching so that the initial nonmagnetic layer becomes the nonmagnetic layer; and forming the pole layer in the pole-layer-encasing section formed by the nonmagnetic layer. | 06-25-2009 |
20090197121 | THERMALLY STABLE HIGH ANISOTROPIC HIGH MAGNETIC MOMENT FILMS - High magnetic moment films FeCo(X, Y), where X is a transition metal element and Y is a rare earth element are formed using off-axis static deposition techniques. The films have tunable magnetic anisotropy from 0 Oe to greater than 500 Oe that are thermally stable beyond nominal photoresist curing temperatures. By using off-axis static deposited FeCo(X, Y) films as seed layers to normally deposited FeCo films, inplane anisotropy and the magnetic moment can be controlled for specific design needs. Epitaxial-like growth (column-to-column matching) from the off-axis static FeCo(X,Y) seed layers to normally deposited FeCo films is attributed to sustained anisotropy in the entire film. | 08-06-2009 |
20090197122 | PERPENDICULAR MAGNETIC RECORDING MEDIUM AND MAGNETIC STORAGE DEVICE - The perpendicular magnetic recording medium includes a non-magnetic underlayer composed of Ru or an Ru alloy having a columnar structure in which crystalline particles are isolated from each other by a space, a non-magnetic granular layer provided on the non-magnetic underlayer and composed of crystalline particles and a non-soluble phase and a granular magnetic layer provided on the non-magnetic granular layer and composed of CoCrPt alloy crystalline particles and the non-soluble phase, wherein when a lattice constant in an in-plane direction of the non-magnetic underlayer is a | 08-06-2009 |
20090291327 | MAGNETIC LAMINATED FILM, METHOD OF MANUFACTURING THE SAME, AND MAGNETIC HEAD - The magnetic laminated film includes magnetic films having smooth surfaces. The method of manufacturing the magnetic laminated film comprises the steps of: forming a magnetic film including Fe and Co; smoothening a surface of the magnetic film; forming a discontinuous film, which is composed of a magnetic material or an insulating material and which has a thickness to form a discontinuous film, on the smooth surface of the magnetic film; and repeating the above described steps to laminate a plurality of the magnetic films. | 11-26-2009 |
20100047627 | MULTILAYER HARD MAGNET AND DATA STORAGE DEVICE READ/WRITE HEAD INCORPORATING THE SAME - A hard magnet may include a seed layer including a first component including at least one of a Pt-group metal, Fe, Mn, Ir, and Co, a cap layer comprising the first component, and a multilayer stack between the seed layer and the cap layer. In some embodiments, the multilayer stack may include a first layer of including the first component and a second component including at least one of a Pt-group metal, Fe, Mn, Ir, and Co, where the second component is different than the first component. The multilayer stack may further include a second layer formed over the first layer and including the second component, and a third layer formed over the second layer and including the first component and the second component. | 02-25-2010 |
20100119874 | Laminated high moment film for head applications - A laminated high moment film with a non-AFC configuration is disclosed that can serve as a seed layer for a main pole layer or as the main pole layer itself in a PMR writer. The laminated film includes a plurality of (B/M) stacks where B is an alignment layer and M is a high moment layer. Adjacent (B/M) stacks are separated by an amorphous layer that breaks the magnetic coupling between adjacent high moment layers and reduces remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. The amorphous material layer may be made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, Ti, Cr, Nb, or Si, or may be Hf, Zr, Ta, Nb, CoFeB, CoB, FeB, or CoZrNb. Alignment layers are FCC soft ferromagnetic materials or non-magnetic FCC materials. | 05-13-2010 |
20100119875 | MAGNETIC SENSOR - An object is to provide a magnetic sensor permitting an increase in potential output. The magnetic sensor has a channel layer, a magnetization free layer provided on a first portion of the channel layer and configured to detect an external magnetic field, and a magnetization fixed layer provided on a second portion different from the first portion of the channel layer, and a cross-sectional area of the magnetization fixed layer in a surface opposed to the channel layer is larger than a cross-sectional area of the magnetization free layer in a surface opposed to the channel layer. | 05-13-2010 |
20100247967 | MAGNETIC ELEMENT UTILIZING FREE LAYER ENGINEERING - A method and system for providing a magnetic element are described. The method and system include providing a pinned layer, a barrier layer, and a free layer. The free layer includes a first ferromagnetic layer, a second ferromagnetic layer, and an intermediate layer between the first ferromagnetic layer and the second ferromagnetic layer. The barrier layer resides between the pinned layer and the free layer and includes MgO. The first ferromagnetic layer resides between the barrier layer and the intermediate layer. The first ferromagnetic layer includes at least one of CoFeX and CoNiFeX, with X being selected from the group of B, P, Si, Nb, Zr, Hf, Ta, Ti, and being greater than zero atomic percent and not more than thirty atomic percent. The first ferromagnetic layer is ferromagnetically coupled with the second ferromagnetic layer. The intermediate layer is configured such that the first ferromagnetic layer has a first crystalline orientation and the second ferromagnetic layer has a second crystalline orientation different from the first ferromagnetic layer. | 09-30-2010 |
20110111261 | PERPENDICULAR MAGNETIC RECORDING MEDIA HAVING A DUAL ONSET LAYER - Perpendicular magnetic recording (PMR) media and methods of fabricating PMR media are described. The PMR media includes, among other layers, an underlayer, a first onset layer on the underlayer, a second onset layer on the first onset layer, and a perpendicular magnetic recording layer on the second onset layer. The second onset layer has a magnetic moment which is higher than both a magnetic moment of the first onset layer and a magnetic moment of the perpendicular magnetic recording layer. | 05-12-2011 |
20110244268 | SPIN TRANSPORT ELEMENT - A spin transport element | 10-06-2011 |
20120164486 | NICR AS A SEED STACK FOR FILM GROWTH OF A GAP LAYER SEPARATING A MAGNETIC MAIN POLE OR SHIELD - A method and apparatus for a high-moment magnetic material used in a write head deposited on a gap layer that was grown using a nickel-chromium seed layer. The nickel-chromium seed layer provides the correct crystallographic orientation for both the nonmagnetic gap layer and the high-moment magnetic material such that the high-moment magnetic material has soft-magnetic properties and is useful as either a main pole or as shield layer in a write head. Moreover, the nickel-chronium seed layer, which may be exposed on the air bearing surface (ABS) of the write head, has an etch rate similar to other metals found in the ABS, thereby avoiding pole tip protrusion during later processing. | 06-28-2012 |
20120164487 | WRITE HEAD POLE LAMINATE STRUCTURE - The present invention generally relates to a write head pole laminate structure. The write head pole structure can include multiple multi-layer magnetic structures that are separated by a non-magnetic material that is amorphous or microcrystalline. Each multi-layer magnetic structure includes one or more first magnetic layers that are spaced from one or more second magnetic layers by a non-magnetic layer such that the one or more first magnetic layers are substantially identical to the one or more second magnetic layers. In such a design, the one or more second magnetic layers are antiparallel to the one or more first magnetic layers so that a zero total net magnetic moment is present for the multi-layer magnetic structure when current is removed from the write head pole. | 06-28-2012 |
20120270073 | Magnetic Element With Dual Magnetic Moments - An apparatus and associated method may be used to provide a data sensing element capable of detecting changes in magnetic states. Various embodiments of the present invention are generally directed to a magnetically responsive lamination of layers and [a] means for generating a high magnetic moment region proximal to an air bearing surface (ABS) and a low magnetic moment region proximal to a hard magnet. | 10-25-2012 |
20120295132 | Writer design with enhanced writability - A perpendicular magnetic recording (PMR) head is fabricated with a main pole and a trailing edge shield having surfaces and interior portions that may include synthetic antiferromagnetic multi-layered superlattices (SAFS) formed on and/or within them respectively. The SAFS, which are multilayers formed as periodic multiples of antiferromagnetically coupled tri-layers, provide a mechanism for enhancing the component of the writing field that is vertical to the magnetic medium by exchange coupling to the magnetization of the pole and shield and constraining the directions of their magnetizations to lie within the film plane of the SAFS. | 11-22-2012 |
20130280556 | MAGNETIC RECORDING MEDIA WITH SOFT MAGNETIC UNDERLAYERS - Provided herein, is an apparatus that includes a nonmagnetic substrate having a surface; and a plurality of overlying thin film layers forming a layer stack on the substrate surface. The layer stack includes a magnetically hard perpendicular magnetic recording layer structure and an underlying soft magnetic underlayer (SUL), wherein the sum of a magnetic thickness of the layer stack is a magnetic thickness of up to about 2 memu/cm̂2. | 10-24-2013 |
20140037989 | Thin Seeded Co/Ni Multilayer Film with Perpendicular Anisotropy for Read Head Sensor Stabilization - A hard bias (HB) structure for producing longitudinal bias to stabilize a free layer in an adjacent spin valve is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni) | 02-06-2014 |
20140272471 | NON-MAGNETIC SEED LAYER METHOD AND APPARATUS - In accordance with one embodiment, an apparatus can be configured that includes a main pole layer of magnetic material; a second layer of magnetic material; a first gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; and wherein the second gap layer of non-magnetic material is disposed directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, a method of manufacturing such a device may also be utilized. | 09-18-2014 |
20140377589 | NARROW READ-GAP HEAD WITH RECESSED AFM - The embodiments of the present invention relate to a magnetic read head with pinned layers extending to the ABS of the read head and in contact with an antiferromagnetic layer that is recessed in relation to the ABS of the read head. The recessed antiferromagnetic layer may be disposed above or below the pinned layer structure and provides a pinning field to prevent amplitude flipping in head operation. In these embodiments of the present invention, the read gap of the sensor, that is the distance between the highly permeable, magnetically soft upper and lower shield layers at the ABS, is reduced by the thickness of the antiferromagnetic layer. | 12-25-2014 |
20150147592 | STORAGE MEDIUM WITH LAYER(S) FOR ENHANCED HEATING - An apparatus that includes a storage layer and a heating assistance element. The heating assistance element is adjacent to the storage layer or doped into the storage layer. The heating assistance element is configured to enhance spatial confinement of energy from a field to an area of the storage layer to which the field is applied. | 05-28-2015 |