Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Coating formed by reaction of vaporous or gaseous mixture with a base (i.e., reactive coating of non-metal base)

Subclass of:

427 - Coating processes

427248100 - COATING BY VAPOR, GAS, OR SMOKE

427255230 - Mixture of vapors or gases (e.g., deposition gas and inert gas, inert gas and reactive gas, two or more reactive gases, etc.) utilized

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
427255260 Coating formed by reaction of vaporous or gaseous mixture with a base (i.e., reactive coating of non-metal base) 18
20090035463THERMAL PROCESSING SYSTEM AND METHOD FOR FORMING AN OXIDE LAYER ON SUBSTRATES - Thermal processing system and method for forming an oxide layer on substrates. The thermal processing system has a gas injector with first and second fluid lumens confining first and second process gases, such an molecular hydrogen and molecular oxygen, from each other and another fluid lumen that receives the process gases from the first and second fluid lumens. The first and second process gases combine and react in this fluid lumen to form a reaction product. The reaction product is injected from this fluid lumen into a process chamber of the thermal processing system, where substrates are exposed to the reaction product resulting in formation of an oxide layer.02-05-2009
20090196992GAS MIXER AND MANIFOLD ASSEMBLY FOR ALD REACTOR - A system and method for mixing a plurality of gases for an atomic layer deposition (ALD) reactor. The mixer is configured to mix the plurality of gases while minimizing the potential for re-circulation within the mixer. The mixer is further configured to maintain the flow velocity of the plurality of gases as the gases pass through the mixer.08-06-2009
20100015334FILM FORMING METHOD AND APPARATUS, AND STORAGE MEDIUM - A method for film formation is provided that can significantly suppress the amount of a source gas consumed in the formation of a copper film on a substrate by supplying a gas of a metallic source material complex, for example, copper acetate, produced by the sublimation of a solid source material, as a source gas to the substrate to cause a chemical reaction of the source gas. A source gas produced by the sublimation of a solid source material is supplied into a processing chamber, and the source material is adsorbed as a solid onto an adsorption/desorption member within the processing chamber. Next, the source gas supply and exhaust are stopped, and the processing chamber is brought to the state of a closed space. Thereafter, the substrate is heated, and the source material is chemically reacted on the substrate to form a thin film on the substrate.01-21-2010
20100055312FILM DEPOSITION APPARATUS, SUBSTRATE PROCESSING APPARATUS, FILM DEPOSITION METHOD, AND COMPUTER-READABLE STORAGE MEDIUM - In a film deposition apparatus which deposits a thin film on a substrate by supplying first and second reactive gases in a vacuum chamber, there are provided a turntable, a first reactive gas supplying portion and a second reactive gas supplying portion which are arranged to extend from circumferential positions of the turntable to a center of rotation of the turntable, a first separation gas supplying portion arranged between the first and second reactive gas supplying portions, a first space having a first height and including the first separation gas supplying portion, a second space having a second height and including the second reactive gas supplying portion, a third space having a height lower than the first height and the second height and including the first separation gas supplying portion, a position detecting unit detecting a rotation position of the turntable, and a detection part arranged at a circumferential portion of the turntable and detected by the position detecting unit.03-04-2010
20100221426Web Substrate Deposition System - A web substrate atomic layer deposition system includes at least one roller that transports a surface of a web substrate through a plurality of processing chambers. The plurality of processing chambers includes a first precursor reaction chamber that exposes the surface of the web substrate to a desired partial pressure of first precursor gas, thereby forming a first layer on the surface of the web substrate. A purging chamber purges the surface of the web substrate with a purge gas. A vacuum chamber removes gas from the surface of the substrate. A second precursor reaction chamber exposes the surface of the web substrate to a desired partial pressure of the second precursor gas, thereby forming a second layer on the surface of the web substrate.09-02-2010
20110039026FILM DEPOSITION APPARATUS, FILM DEPOSITION METHOD, AND COMPUTER READABLE STORAGE MEDIUM - A silicon oxide film is deposited by rotating a rotation table on which a wafer W is placed to allow BTBAS gas to be adsorbed on an upper surface of the wafer W and supply a O02-17-2011
20110129604DIRECT OXIDATION METHOD FOR SEMICONDUCTOR PROCESS - An oxidation method for performing direct oxidation includes respectively supplying an oxidizing gas and a deoxidizing gas to the process field, and directly oxidizing a surface target substrates by use of oxygen radicals and hydroxyl group radicals generated by a reaction between the oxidizing gas and the deoxidizing gas. The oxidizing gas is supplied through an oxidizing gas nozzle extending over a vertical length corresponding to the process field and is spouted from a plurality of gas spouting holes formed on the oxidizing gas nozzle and arrayed over the vertical length corresponding to the process field. The deoxidizing gas is supplied through a plurality of deoxidizing gas nozzles having different heights respectively corresponding to a plurality of zones of the process field arrayed vertically and is spouted from gas spouting holes respectively formed on the deoxidizing gas nozzles each at height of a corresponding zone.06-02-2011
20110159187FILM DEPOSITION APPARATUS AND FILM DEPOSITION METHOD - A film deposition apparatus includes a separation member that extends to cover a rotation center of the turntable and two different points on a circumference of the turntable above the turntable, thereby separating the inside of the chamber into a first area and a second area; a first reaction gas supplying portion that supplies a first reaction gas toward the turntable in the first area; a second reaction gas supplying portion that supplies a second reaction gas toward the turntable in the second area; a first evacuation port that evacuates the first reaction gas and the first separation gas that converges with the first reaction gas; and a second evacuation port that evacuates the second reaction gas and the first separation gas that converges with the second reaction gas.06-30-2011
20110311726METHOD AND APPARATUS FOR PRECURSOR DELIVERY - An improved precursor vaporization device and method for vaporizing liquid and solid precursors having a low vapor pressure at a desired precursor temperature includes elements and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber. An improved ALD system and method for growing thin films having more thickness and thickness uniformity at lower precursor temperatures includes devices and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber and for releasing a plurality of first precursor pulses into a reaction chamber to react with substrates before releasing a different second precursor pulse into the reaction chamber to react with the substrates.12-22-2011
20120058270THERMALLY STABLE VOLATILE FILM PRECURSORS - A precursor for the deposition of a thin film by atomic layer deposition is provided. The compound has the formula MxLy where M is a metal and L is an amidrazone-derived ligand or an amidate-derived ligand. A process of forming a thin film using the precursors is also provided.03-08-2012
20120269967Hot Wire Atomic Layer Deposition Apparatus And Methods Of Use - Provided are gas distribution plates for atomic layer deposition apparatus including a hot wire or hot wire unit which can be heated to excite gaseous species while processing a substrate. Methods of processing substrates using a hot wire to excite gaseous precursor species are also described.10-25-2012
20120269968Atomic Layer Deposition Apparatus and Process - An atomic layer deposition apparatus, including: a chamber with an internal volume; a fixture assembly to hold a substrate within the internal volume of the chamber; a plurality of gas injection ports to facilitate the introduction of gas; at least one precursor gas arrangement to introduce precursor gas into the internal volume; and at least one inactive gas dispersion arrangement to introduce inactive gas into the internal volume. The inactive gas dispersion arrangement is in the form of a primary dispersion member configured to concentrically focus the precursor gas towards a surface of the substrate. A modeling system for an atomic layer deposition apparatus is also disclosed.10-25-2012
20130209685DOPING METHOD OF ATOMIC LAYER DEPOSITION - A doping method of atomic layer deposition includes providing a substrate in a reaction chamber; and performing at least one atomic layer deposition cycle to form a film on a surface of the substrate. The atomic layer deposition cycle includes passing first precursors into the reaction chamber to let first atoms included in the first precursors combine with reaction sites of the substrate; and passing second precursors into the reaction chamber to let second atoms included in the second precursors combine with the reaction sites uncombined with the first atoms or substitute at least part of the first atoms to combine with the reaction sites of the substrate. The above-mentioned doping method of atomic layer deposition is capable of preparing large area and uniformity of doping film without annealing process or with low temperature annealing process.08-15-2013
20130287948Method for Preparing Metal-Carbon Composite of Core-Shell Structure Through Simultaneous Vaporization and Metal-Carbon Composite of Core-Shell Structure Prepared Thereby - A method of preparing a metal-carbon composite of a core-shell structure through simultaneous vaporization, in which a metal particle constitutes a core and carbon constitutes a shell, with the metal-carbon composite prepared in the form of powder and supported on a supporter, and a metal-carbon composite of a core-shell structure prepared by the same. In these methods, the metal-carbon composite of the core-shell structure is prepared through simultaneous vaporization of metal and carbon precursors and does not require separate post-processing. Further, in the metal-carbon composite of the core-shell structure prepared by these methods, a carbon shell covers a portion or the entirety of a surface of a metal core, whereby the metal particles can be prevented from suffering agglomeration, separation or corrosion when subjected to harsh process conditions at high temperatures for long durations under strong acid and alkali conditions, thereby providing high performance and high durability.10-31-2013
20140065307COOLING SUBSTRATE AND ATOMIC LAYER DEPOSITION APPARATUS USING PURGE GAS - Cooling a heated substrate undergoing a deposition process (e.g., ALD, MLD or CVD) and a deposition reactor for performing the deposition process by routing a cooled purge gas through a path in the deposition reactor and then injecting the cooled purge gas onto the substrate. The deposition reactor may include a heater to heat precursor. As the precursor passes the heater, the precursor is heated to a temperature conducive to the deposition process. As a result of operating the heater and routing the heated precursor, the temperature of the substrate and the deposition reactor may be increased. To drop the temperature of the substrate and the deposition reactor, a purge gas cooled to a temperature lower than the heated precursor is injected onto the substrate via the deposition reactor03-06-2014
20140377461FILM FORMING DEVICE AND MANUFACTURING METHOD FOR GLASS WITH FILM - Provided is a device capable of suitably forming a film on a glass film. A film forming device (12-25-2014
427255270 Silicon containing coating 2
20140295082DRIVING METHOD OF VERTICAL HEAT TREATMENT APPARATUS, STORAGE MEDIUM AND VERTICAL HEAT TREATMENT APPARATUS - A driving method of a vertical heat treatment apparatus having a vertical reaction container with a heating part installed includes: performing a process of loading wafers by a substrate holder support to the reaction container; performing a film forming process of storing a first gas at a storage unit and pressurizing the first gas, and alternatively performing a step of supplying the first gas to the vacuum atmosphere reaction container and a step of supplying the second gas to the reaction container; subsequently performing a purge process of unloading the substrate holder support and supplying a purge gas into the reaction container to forcibly peel off a thin film attached to the reaction container; and while the purge process is performed, performing a process of repeating storing the purge gas at the storage unit, pressurizing the gas and discharging the gas into the reaction container.10-02-2014
20150079282Conductive Polymer Films Grafted on Organic Substrates - One aspect of the invention relates to a linker-free, one-step method of grafting polymer films onto organic substrates, and the films obtained by such a method. In certain embodiments, the grafted polymer films are conductive. In certain embodiments, said grafting method utilizes the ability for Friedel-Crafts catalyst to form radical cations from organic substrates. In one embodiment, the method provides poly-3,4-ethylenedioxythiophene (PEDOT) thin films grafted to organic substrates. In other embodiments, the method is applicable to the polymerization of other monomers to yield conducting polymers, such as polyanilines, polypyrroles, polyfurans, polythiophenes and their derivatives. Remarkably, the polymer films grafted by the inventive methods show enormous increases in adhesion strength. Further, in certain embodiments, polymer patterns were easily obtained using the inventive methods and soft lithography techniques. In certain embodiments, well-defined high-density line-and-space patterns were successfully obtained. In certain embodiments, e.g., when the polymer film is conducting, the obtained conducting polymer pattern grafted on common organic substrates can be used for integrated circuitry in flexible electronics.03-19-2015

Patent applications in class Coating formed by reaction of vaporous or gaseous mixture with a base (i.e., reactive coating of non-metal base)

Patent applications in all subclasses Coating formed by reaction of vaporous or gaseous mixture with a base (i.e., reactive coating of non-metal base)

Website © 2025 Advameg, Inc.