Class / Patent application number | Description | Number of patent applications / Date published |
424100370 | Radionuclide or intended radionuclide in an organic compound | 28 |
20080241061 | METHODS OF IMAGING EMPLOYING CHELATING AGENTS - Methods to image neovasculature associated with tumors using emulsions of targeted lipid/surfactant coated nanoparticles coupled to chelating agents containing radioisotopes are described. | 10-02-2008 |
20080247943 | Blood Clot-Targeted Nanoparticles - Emulsions comprising nanoparticles formed from high boiling perfluorochemical substances, said particles coated with a lipid/surfactant coating are made target-specific by directly coupling said nanoparticles to a targeting ligand. The nanoparticle may further include biologically active agents, radionuclides, and/or other imaging agents, and are used to image and/or lyse blood clots in human subjects. | 10-09-2008 |
20090022656 | Lipidated glycoprotein particles and methods of use - Lipidated micro- or macroparticles are prepared by covalently linking a glycoprotein, typically collagen, with at least one lipid. An amino group in the glycoprotein is joined with a primary amine in the lipid. These particles can be used to encapsulate active ingredients, such as drugs. | 01-22-2009 |
20090162278 | Method for Production of Radioisotope Preparations and Their Use in Life Science, Research, Medical Application and Industry - The present invention relates to an universal method for the large scale production of high-purity carrier free or non carrier added radioisotopes by applying a number of “unit operations” which are derived from physics and material science and hitherto not used for isotope production. A required number of said unit operations is combined, selected and optimised individually for each radioisotope production scheme. The use of said unit operations allows a batch wise operation or a fully automated continuous production scheme. The radioisotopes produced by the inventive method are especially suitable for producing radioisotope-labelled bioconjugates as well as particles, in particular nanoparticles and microparticles. | 06-25-2009 |
20090246127 | TARGETING AGENTS FOR MOLECULAR IMAGING - This invention discloses a method of synthesizing targeting contrast agents for molecular imaging and targeting diagnosis and therapy, targeting contrast agents and targeting therapeutic agents and the use thereof. | 10-01-2009 |
20100272638 | RADIOLABELLED MICROPARTICLES, PROCESSES FOR THE PREPARATION THEREOF AND THE USE THEREOF - The invention relates to microparticles radioactively labelled with the technetium isotope | 10-28-2010 |
20100272639 | POLYSACCHARIDE NANOPARTICLES - Polysaccharide nanoparticles that are particularly useful in for example drug and agent delivery, tissue-specific targeting, for medical imaging and diagnosis, as well as modifiers of physico-chemical properties. The nanoparticles can be highly-branched glucose homopolymers and can be characterized by a uniform spherical shape. They are monodisperse, hydrophilic and produce low solution viscosities. The nanoparticles are non-toxic, biocompatible and biodegradable. Also, the process of isolation of said polysaccharide nanoparticles from various organisms including, but not limited to, microorganisms such as bacteria and yeasts. Also provided are methods for chemical conjugation of the polysaccharide nanoparticles with various agents. Also provided are examples of use of the polysaccharide nanoparticles and their derivatives as drug delivery systems and fluorescent di-agnostics. | 10-28-2010 |
20110123438 | UNIVERSAL ANCHOR PEPTIDE FOR NANOPARTICLES - The present invention provides a substantially non-lytic, non-cytotoxic anchor peptide that is capable of stably inserting into lipid membranes. In particular, the invention provides nanoparticles comprising stably inserted anchor peptides, which may be conjugated to a variety of different cargo complexes. | 05-26-2011 |
20110123439 | Dual-Modality PET/MRI Contrast Agents - The present invention relates a dual-modality PET (positron emission tomography)/MRI (magnetic resonance imaging) contrast agent, a hybrid nanoparticle comprising: (a) a magnetic signal generating core; (b) a water-soluble multi-functional ligand coated on the signal generating core; and (c) a positron emitting factor linked to the water-soluble multi-functional ligand. The contrast agent of the present invention is the dual-modality contrast agent enabling to perform PET and MR imaging and can effectively obtain images having the merits of PET (excellent sensitivity and high temporal resolution) and MR (high spatial resolution and anatomical information) imaging. The contrast agent of the present invention is very useful for non-invasive and highly sensitive real-time fault-free imaging of various biological events such as cell migration, diagnosis of various diseases (e.g., cancer diagnosis) and drug delivery. | 05-26-2011 |
20110280799 | NANOCELLS FOR DIAGNOSIS AND TREATMENT OF DISEASES AND DISORDERS - The present invention relates to novel nanocell compositions and their use in imaging, diagnostic and treatment methods. In one embodiment, nanocells tailored for imaging methods comprise a nanocore surrounded by a lipid matrix, and are modified to contain a radionuclide core or a nanocore with an emission spectra. The nanocells may be size restricted such as being greater than about 60 nm so that they selectively extravasate at sites of angiogenesis (e.g. tumor) and do not pass through normal vasculature or enter non-tumor bearing tissue. In this way, angiogenic sites can be both detected and treated. In another embodiment, nanocells are tailored for various treatment methods, including the treatment of brain cancer, asthma, Grave's Disease, Cystic Fibrosis, and Pulmonary Fibrosis. | 11-17-2011 |
20120128583 | DTPA DERIVATIVE, METAL COMPLEX, MR AND CT CONTRAST AGENT AND METHOD FOR MANUFACTURING SAME - The present invention relates to DTPA derivatives capable of forming complexes by combining with metals and the like, metal complexes formed by combining with the DTPA derivatives, MR and CT contrast agents including gold (Au) nano-particles of which surfaces are coated with the metal complexes, and a method for manufacturing the same. The MR and CT contrast agents according to the present invention have a high magnetic relaxation rate, thereby providing an excellent contrast enforcement effect and a long image acquisition time. Furthermore, the MR and CT contrast agents are not toxic to the human body, and are image contrast agents of dual molecules capable of being applied to both MR and CT. | 05-24-2012 |
20120213698 | LOADING TECHNIQUE FOR PREPARING RADIONUCLIDE CONTAINING NANOPARTICLES - The present invention relates to a novel composition and method for loading delivery systems such as liposome compositions with radionuclides useful in targeted diagnostic and/or therapy of target site, such as cancerous tissue and, in general, pathological conditions associated with leaky blood vessels. The composition and methods of the invention find particular use in diagnosing and imaging cancerous tissue and, in general, pathological conditions associated with leaky blood vessels in a subject. The present invention provides a new diagnostic tool for the utilization of positron emission tomography (PET) imaging technique. One specific aspect of the invention is directed to a method of producing nanoparticles with desired targeting properties for diagnostic and/or radio-therapeutic applications. | 08-23-2012 |
20130039848 | FLUORESCENT SILICA-BASED NANOPARTICLES - The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as polyethylene glycol) (PEG) The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo The nanoparticle may further be conjugated to a ligand capable of binding to a cellular component associated with the specific cell type, such as a tumor marker A therapeutic agent may be attached to the nanoparticle Radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle to permit the nanoparticle to be detectable by various imaging techniques. | 02-14-2013 |
20130115165 | Water-Dispersible Oral, Parenteral, and Topical Formulations for Poorly Water Soluble Drugs Using Smart Polymeric - Polymeric nanoparticles with a hydrophobic core and a hydrophilic shell are formed from: 1) N-isopropylacrylamide (NIPAAM), at a molar ratio of about 50% to about 90%, and preferably 60% for specific delivery routes such as oral or parenteral; either water-soluble vinyl derivatives like vinylpryolidone (VP) or vinyl acetate (VA), or water insoluble vinyl derivaties like methyl methacrylate (MMA) or styrene (ST), at a molar ratio of about 10% to about 30%; and acrylic acid (AA), at a molar ration of about 10% to about 30%. | 05-09-2013 |
20130202526 | PAA NANOPARTICLES FOR PET IMAGING AND PDT TREATMENT - PAA nanoparticles containing at least one tetrapyrrolic photosensitizer and at least one PET imaging agent. | 08-08-2013 |
20130302243 | RADIOLABELED NANOSYSTEM, PROCESS FOR THE PREPARATION THEREOF AND ITS USE - Disclosed are novel, targeted, self-assembled nanoparticles radiolabeled with technetium-99m (Tc-99m) as radiodiagnostic compositions, methods of using these compositions and methods for preparing such radiolabeled compositions. Specifically, the compositions of the nanoparticles are composed of self-assembled polyelectrolyte biopolymers having targeting moieties, which can be suitable for targeted delivery of radionuclide metal ions complexed to the nanoparticles. These radiolabeled nanoparticles can specifically bind and internalize into the targeted tumor cells to realize the receptor mediated uptake. Radiolabeled, targeted nanoparticulate composition, methods for making, radiolabeling and using such compositions in the field of diagnosis and therapy are also provided. | 11-14-2013 |
20140017165 | DNA REPAIR ENZYME INHIBITOR NANOPARTICLES AND USES THEREOF - This invention relates generally to the discovery of novel nanoparticles for delivery of DNA double-stranded break (DSB) repair enzyme inhibitors such as wortmannin or wortmannin analogues. In one embodiment, these nanoparticles comprise a polylactide polyglycolide (PLGA) copolymer and a polyethylene glycol (PEG). In addition methods of treatment and methods of enhancing radiation treatments are also provided. | 01-16-2014 |
20140199235 | NANOPARTICLE COATED WITH LIGAND INTRODUCED WITH LONG HYDROPHOBIC CHAIN AND METHOD FOR PREPARING SAME - The present invention relates to a nanoparticle having a linker connected to a long alkane or alkene chain, and a method for preparing the nanoparticle. The alkyl chain of C | 07-17-2014 |
20140271461 | COMPOSITIONS AND ASSOCIATED METHODS FOR RADIOISOTOPE-BINDING MICROPARTICLES - The present disclosure relates to polymeric materials that may be labeled with a radioisotope, to processes for producing the labeled polymeric material, and to methods of using the materials in analytical and therapeutic applications. Specifically, the disclosure relates to injectable and implantable microparticles, such as microspheres, which are associated with radioisotopes such that the microparticles are both therapeutic and detectable. The radioisotope-containing microparticles are useful for embolization and other therapeutic medical applications. | 09-18-2014 |
20140314664 | Hydrophobic Molecule-Induced Branched Polymer Aggregates And Their Use - Symmetrically and asymmetrically branched homopolymers are modified at the surface level with functional groups that enable forming aggregates with water insoluble or poorly water soluble pharmaceutically active agents (PAA). The aggregates formed are specifically induced by interaction of PAA and homopolymer and are different from aggregates that are formed by the polymer alone in the absence of the PAA or by the PAA alone in the absence of the polymer. Such aggregates can be used to improve drug solubility, stability, delivery and efficacy. | 10-23-2014 |
20140363371 | TELODENDRIMERS WITH ENHANCED DRUG DELIVERY - The present invention provides amphiphilic telodendrimers that aggregate to form nanocarriers characterized by a hydrophobic core and a hydrophilic exterior. The nanocarrier core may include amphiphilic functionality such as cholic acid or cholic acid derivatives, and the exterior may include branched or linear poly(ethylene glycol) segments. Nanocarrier cargo such as hydrophobic drugs and other materials may be sequester in the core via non-covalent means or may be covalently bound to the telodendrimer building blocks. Telodendrimer structure may be tailored to alter loading properties, interactions with materials such as biological membranes, and other characteristics. | 12-11-2014 |
20150023869 | RADIOACTIVE COMPOSITIONS AND METHODS FOR THEIR THERAPEUTIC USE - This invention concerns a pharmaceutically-acceptable composition of radioactive metals, which are used for treating various diseases in animals or humans, such as cancer and arthritis. | 01-22-2015 |
20150297749 | LOW-DENSITY LIPOPROTEIN ANALOGUE NANOPARTICLES, AND COMPOSITION COMPRISING SAME FOR TARGETED DIAGNOSIS AND TREATMENT OF LIVER - This disclosure relates to a low density lipoprotein-like cationic solid lipid nanoparticle targeting liver cells including parenchyma cells and non-parenchyma cells, a composition for liver target delivery, a composition for diagnosis and/or treatment of liver disease comprising the same, and a method for liver targeting of an active ingredient. | 10-22-2015 |
20150328346 | MULTIMODAL PARTICLES, METHODS AND USES THEREOF - The present disclosure, among other things, provides a composition of a particle including a substrate; at least a first condensation layer comprising at least a first dopant entity; and at least a second layer comprising a second dopant entity. In some embodiments, different dopant entities are included in different layers. In some embodiments, such dopant entities are or comprise detectable entities. This, in some embodiments, provided technologies achieve multi-modality particles. Among the many advantages of provided technologies include the ability to image particles by a plurality of distinct imaging modalities and/or in a plurality of contexts (e.g., pre-surgical, intraoperative and/or post-surgical environments). The present invention provides methods that include a single administration of particles to a subject, followed by a plurality of steps that comprise imaging the administered particles, which steps may utilize different imaging technologies and/or be performed at different times and/or in different environments. | 11-19-2015 |
20150342883 | Hyaluronidase and a Low Density Second PEG Layer on the Surface of Therapeutic-Encapsulated Nanoparticles to Enhance Nanoparticle Diffusion and Circulation - A delivery system comprising an organic nanoparticle, a hyaluronidase anchored or conjugated to the organic nanoparticle. The organic nanoparticle may be selected from a polymer-based nanoparticle, a lipid-based nanoparticle and nanoparticle formed by lipid-like molecules. In some embodiments, the hyaluronidase is covalently bound to a linker or spacer which, in turn, is anchored or covalently bound to the organic nanoparticle. The delivery system may also comprise an active pharmaceutical agent, a diagnostic agent, and/or a cellular membrane. The organic nanoparticle may further have a low density poly(ethylene glycol) layer on the surface. Methods for using the delivery system including for treating or diagnosing a disease are also provided. The organic nanoparticle provides enhanced diffusion/penetration through the extracellular matrix found in tumors, as well as increased circulation time in a human or animal body. | 12-03-2015 |
20160067362 | HELICAL POLYCARBODIIMIDE POLYMERS AND ASSOCIATED IMAGING, DIAGNOSTIC, AND THERAPEUTIC METHODS - Described herein are suspensions of helical polycarbodiimide polymers that ‘cloak’ nanotubes, thereby effecting control over nanotube emission, providing a new mechanism of environmental responsivity, and enabling precise control over sub-cellular localization. The helical polycarbodiimide polymers described herein are water soluble, easily modifiable, and have unique architectures that facilitate their application in radiopharmaceutical delivery and imaging methods, in therapeutics and therapeutic delivery methods, and their use as sensors—both in conjunction with carbon nanotubes, and without nanotubes. | 03-10-2016 |
20160095940 | CARBON NANOTUBE NANO-THERAPY COMPOSITES WITH PACLITAXEL - In various embodiments a payload molecule or drug molecule delivery system is disclosed for delivering paclitaxel. The system comprises a plurality of functionalized discrete carbon nanotubes having specific properties. The composition can comprise a plurality of discrete carbon nanotubes that have at least a portion of the carbon nanotubes with a number average (ratio of number average contour length to end to end length) of greater than 1.1 and up to about 3. These discrete carbon nanotubes having the specified ratio of number average (tube contour length (T | 04-07-2016 |
20160151518 | RADIOLABELLED MATERIAL | 06-02-2016 |