Class / Patent application number | Description | Number of patent applications / Date published |
423599000 | Manganese (e.g., manganate, etc.) | 9 |
20090202427 | PROCESS FOR PREPARING MIXED METAL OXIDE POWDERS - Process for preparing mixed metal oxide powders Abstract Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated in an evaporation zone of a reactor and oxidized in the vaporous state in an oxidation zone of this reactor, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein at least one pulverulent metal, together with one or more combustion gases, is fed to the evaporation zone, the metal is evaporated completely in the evaporation zone under nonoxidizing conditions, an oxygen-containing gas and at least one metal compound are fed, separately or together, in the oxidation zone to the mixture flowing out of the evaporation zone, the oxygen content of the oxygen-containing gas being at least sufficient to oxidize the metal, the metal compound and the combustion gas completely. | 08-13-2009 |
20110052484 | PROCESS FOR THE PREPARATION OF LITHIUM METAL OXIDES INVOLVING FLUIDIZED BED TECHNIQUES - A method of producing lithium metal oxides can include mixing lithium salt and a metal oxide to form a composition, heating the composition in a first reactor, transferring the composition to a second reactor, and passing the composition through the second reactor to anneal the composition to form lithium metal oxides. The second reactor can be a fluidized bed reactor. The lithium metal oxide can have an average crystal size of between about 5 microns and about 20 microns. | 03-03-2011 |
20110311435 | METHOD FOR PRODUCING SPINEL-TYPE LITHIUM MANGANATE - The production method of the present invention includes (A) a raw material preparation step of preparing a raw material mixture containing at least a manganese compound; (B) a forming step of forming the raw material mixture prepared through the raw material preparation step into a compact having a longitudinal size L and a maximum size R as measured in a direction perpendicular to the longitudinal direction (i.e., in a thickness direction) such that L/R is 3 or more; (C) a firing step of firing the compact obtained through the forming step; and (D) a crushing step of crushing the fired compact obtained through the firing step. | 12-22-2011 |
20110311436 | METHOD FOR PRODUCING SPINEL-TYPE LITHIUM MANGANATE - The production method of the present invention includes a raw material preparation step of preparing a raw material mixture; a firing step of firing the raw material mixture prepared through the raw material preparation step; and a crushing step of crushing the fired compact obtained through the firing step, wherein the raw material mixture contains a main raw material containing at least a manganese compound, and a seed crystal having a spinel-type crystal structure. | 12-22-2011 |
20110311437 | METHOD FOR PRODUCING SPINEL-TYPE LITHIUM MANGANATE - The production method of the present invention includes (A) a forming step of forming into a sheet-like compact a raw material containing at least a manganese compound and not containing a lithium compound; (B) a first firing step of firing the sheet-like compact formed through the forming step; and (C) a second firing step of firing a mixture of the fired compact obtained through the first firing step and a lithium compound at a temperature lower than the firing temperature employed in the first firing step. | 12-22-2011 |
20120282164 | METHOD OF CONTROLLING ASPECT RATIO OF NANO-STRUCTURE, METHOD OF PRODUCING NANO-STRUCTURE USING THE SAME AND NANO-STRUCTURE PRODUCED THEREBY - Provided are a method of easily controlling the aspect ratio of a nano-structure, which can be effectively used in various fields of application, including a positive active material for a rechargeable battery, an electrode material for a storage battery, a redox catalyst, a molecule support, and so on, and by which various nano-structures of desired sizes can be easily produced according to the necessity. The method includes preparing a mixed solution including a manganese salt and an oxidant, adding a pH controlling additive to the mixed solution and controlling a pH level of the mixed solution using the following equation, and heating the pH-controlled mixed solution at a temperature in a range of 50□ to 200□ for 1 hour to 10 days to cause a reaction to take place: | 11-08-2012 |
20130251623 | CONTINUOUS PROCESS FOR NANOMATERIAL SYNTHESIS FROM SIMULTANEOUS EMULSIFICATION AND DETONATION OF AN EMULSION - The present invention refers to a continuous process for in secco nanomaterial synthesis from the emulsification and detonation of an emulsion. The said process combines the simultaneous emulsification and detonation operations of the emulsion, thus assuring a production yield superior to 100 kg/h. When guaranteeing that the sensitization of the emulsion occurs mainly upon its feeding into the reactor, it is possible to avoid the accumulation of any class-1 substances along the entire synthesis process, thus turning it into an intrinsically safe process. Afterwards, dry collection of the nanomaterial avoids the production of liquid effluents, which are very difficult to process. Given that there's neither accumulation nor resort to explosive substances along the respective stages, the process of the present invention becomes a safe way of obtaining nanomaterial, thus allowing it to be implemented in areas wherein processes with hazardous substance aid are not allowed. | 09-26-2013 |
20140127125 | Method for Preparing Lithium Manganese Oxide by Solid-Phase Reaction - The present invention relates to a method for preparing lithium manganese oxide used as a lithium adsorbent and, more particularly, to a method for preparing lithium manganese oxide by a solid-phase reaction. According to the preparation method of the present invention, since the entire reaction is carried out only by the solid-phase reaction, it is possible to solve the problem of waste fluids produced during a conventional liquid-phase reaction, and the preparation method of the present invention is a single process, which is suitable for mass production. | 05-08-2014 |
20150104373 | TRIMANGANESE TETRAOXIDE AND ITS PRODUCTION PROCESS - Trimanganese tetraoxide has high reactivity with a lithium compound, is excellent in handling efficiency, and is suitable as a manganese material of a lithium manganese oxide, and its production process. Trimanganese tetraoxide particles including trimanganese tetraoxide primary particles having an average primary particle size of at most 2 μm agglomerated, the pore volume of pores being at least 0.4 mL/g. The most frequent pores are preferably pores having a diameter of at most 5 μm. The trimanganese tetraoxide particles can be obtained by producing trimanganese tetraoxide particles, which includes directly crystallizing trimanganese tetraoxide from a manganese salt aqueous solution, wherein the manganese salt aqueous solution and an alkali aqueous solution are mixed so that the oxidation-reduction potential is at least 0 mV and OH | 04-16-2015 |