Class / Patent application number | Description | Number of patent applications / Date published |
420472000 | Phosphorus containing | 36 |
20080286142 | Copper Alloy Water Supply Member - A member for water works is proposed in which the content of lead is limited to a very small values while maintaining its mechanical properties, castability, machinability, pressure resistance, etc. to levels equivalent to those of conventional copper alloys containing lead. | 11-20-2008 |
20080298998 | COPPER ALLOY FOR ELECTRIC AND ELECTRONIC EQUIPMENTS - A copper alloy for electric and electronic equipments, containing from 0.5 to 4.0 mass % of Ni, from 0.5 to 2.0 mass % of Co, and from 0.3 to 1.5 mass % of Si, with the balance of copper and inevitable impurities,
| 12-04-2008 |
20090010797 | COPPER ALLOY PLATE FOR ELECTRIC AND ELECTRONIC PARTS HAVING BENDING WORKABILITY - A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet. | 01-08-2009 |
20090087340 | COPPER-BASED BRAZING ALLOY AND BRAZING PROCESS - The invention proposes a brazing alloy, which can be produced in particular as a homogenous, ductile, amorphous brazing foil and consists of 2 to 20 atom % of nickel, 2 to 12 atom % of tin, 0.5 to 5.0 atom % of zinc, 6 to 16 atom % of phosphorus, remainder copper and incidental impurities. The total amount of copper, nickel, tin and zinc is between 80 and 95 atom %. The addition of more than 0.5 atom % of zinc produces excellent resistance to surface oxidation in air and/or atmospheric humidity. These brazing alloys can be used to produce excellent brazed joints. | 04-02-2009 |
20090098011 | Copper Tin Nickel Phosphorus Alloys With Improved Strength and Formability and Method of Making Same - A new copper-based alloy is described along with a processing method to make a strip that can be used for various automotive interconnects. The alloy process combination yields a material with high strength and electrical conductivity with excellent formability. The combination of properties result from a Cu—Sn—Ni—P alloy with optional Mg additions and thermal-mechanical processing to make an alloy with a conductivity of 40% IACS, yield strength of 80 KSI, bend formability of 1t/1t minimum, and stress relaxation of 65% at 150° C. after 1000 hours. Processing can be modified to increase formability at the expense of yield strength. Improvements to conductivity come from changes in chemistry as well as processing. The new chemistry-process optimization results in a low cost alloy of Cu—Sn—Ni—P—Mg. | 04-16-2009 |
20090116996 | COPPER ALLOY, COPPER ALLOY PLATE, AND PROCESS FOR PRODUCING THE SAME - A copper alloy with an excellent stress relaxation resistance including Ni: 0.1 through 3.0 mass %, Sn: 0.01 through 3.0 mass %, P: 0.01 through 0.3 mass % and remainder copper and inevitable impurities, and the Ni content in extracted residues separated and left on a filter having filter mesh size of 0.1 μm by using an extracted residues method accounting for 40 mass % or less of the Ni content in the copper alloy, wherein the extracted residues method requires that 10 g of the copper alloy is immersed in 300 ml of a methanol solution which contains 10 mass % of ammonium acetate, and using the copper alloy as the anode and platinum as the cathode, constant-current electrolysis is performed at the current density of 10 mA/cm | 05-07-2009 |
20090116997 | COPPER ALLOY TUBE FOR HEAT EXCHANGERS - A copper alloy tube according to the present invention includes Sn 0.1 to 2.0 mass %, P 0.005 to 0.1 mass %, S 0.005 mass % or less, O 0.005 mass % or less, and H 0.0002 mass % or less, and the remainder has a composition consisting of Cu and unavoidable impurities. And, as is annealed, the copper alloy tube has the following characteristics: a tensile strength in the longitudinal direction of the copper alloy tube is 250 N/mm | 05-07-2009 |
20090220375 | Bronze-based alloy of low lead content - The object of the present invention is to provide a bronze-based alloy of low lead content, first improved in tensile strength at high temperatures, secondly contributing to the promotion of the environmental conservation including recycling, while avoiding the adverse effect of lead on human bodies by means of reduction of a lead content, and excellent from the standpoints of mass-productivity and manufacturing cost. The alloy includes 2.0 to 6.0 mass % of Sn, 3.0 to 10.0 mass % of Zn, 0.1 to 3.0 mass % of Bi, 0.1 mass % | 09-03-2009 |
20090280026 | COPPER-ZINC-SILICON ALLOY, PRODUCTS USING THE ALLOY AND PROCESSES FOR PRODUCING THE ALLOY - A Cu—Zn—Si alloy includes, in % by weight, 70 to 80% of copper, 1 to 5% of silicon, to 0.5% of boron, up to 0.2% of phosphorus and/or up to 0.2% of arsenic, a remainder of zinc, plus inevitable impurities. Products using the alloy and processes for producing the alloy are also provided. The alloy is distinguished by an improved resistance to oxidation and by uniform mechanical properties. | 11-12-2009 |
20090297390 | LEADLESS BRASS ALLOY EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE - By enhancing a stress corrosion cracking resistance in a leadless brass alloy, specifically by suppressing a velocity of propagation of corrosion cracks in the brass alloy, a straight line crack peculiar to the leadless brass alloy is suppressed, a probability of cracks coming into contact with γ phases is heightened and local corrosion on the brass surface is prevented to suppress induction of cracks by the local corrosion, thereby providing a leadless brass alloy contributable to enhancement of the stress corrosion cracking resistance. The present invention is directed to an Sn-containing Bi-based, Sn-containing Bi+Sb-based or Sn-containing Bi+Se+Sb-based leadless brass alloy excellent in stress corrosion cracking resistance, having an α+γ structure or α+β+γ structure and having γ phases distributed uniformly therein at a predetermined proportion to suppress local corrosion and induction of stress corrosion cracks. | 12-03-2009 |
20090304544 | SYSTEMS AND METHODS OF MANUFACTURING A BRAZING ALLOY COMPONENT - Systems and methods of manufacturing a brazing alloy component such that the brazing alloy component has sufficient ductility to be formed into a ring-shaped member. | 12-10-2009 |
20100061884 | WHITE-COLORED COPPER ALLOY WITH REDUCED NICKEL CONTENT - Disclosed is a white-colored copper alloy comprising by weight up to 30% zinc, up to 20% manganese, up to 5% nickel with the balance copper. This alloy may have from 6% to 25% zinc, from 4% to 17% manganese, from 0.1% to 3.5% nickel and the balance copper. The balance copper in the alloy may further contain at least one of: up to 0.5% of at least one of the group which consists of Sn, Si, Co, Ti, Cr, Fe, Mg, Zr, and Ag; and up to 0.1% of at least one of the group which consists of P, B, Ca, Ge, Se, Te. It may also contain up to 0.3% Zr by weight. The alloy may have an electrical conductivity greater than 2.5% IACS at eddy current gauge exciting frequencies between 60 kHz and 480 kHz. | 03-11-2010 |
20100166595 | PHOSPHOR-BRONZE ALLOY AS RAW MATERIALS FOR SEMI SOLID METAL CASTING - A phosphor-bronze alloy as raw materials for Semi Solid Metal casting has a component composition containing Sn of 4 to 15 mass %, Zr of 0.0005 to 0.04 mass %, P of 0.01 to 0.25 mass %, and a balance of Cu and inevitable impurities, further containing Zn of 0.1 to 7.5 mass % as needed, and further containing one or more kinds of Pb of 0.01 to 4.5 mass %, Bi of 0.01 to 3.0 mass %, Se of 0.03 to 1.0 mass %, and Te of 0.01 to 1.0 mass % as needed. | 07-01-2010 |
20100284852 | EQUESTRIAN BIT MOUTHPIECE FROM COPPER ALLOY - Equestrian bits are manufactured with the mouthpiece component comprising a copper alloy with composition; 65-80% by weight copper, 0-2% tin and the remainder being zinc including other elements. In a further embodiment, the copper alloy comprises 70-73% copper, 0.9-1.2% tin, 28% zinc the remainder being other elements at a %, by weight, of less than 1%. The alloy of the invention provides a horse bit mouthpiece which rapidly achieves thermal equilibration when placed in, or moved within, the mouth and has characteristic strength sufficient for the intended use. | 11-11-2010 |
20100303667 | NOVEL LEAD-FREE BRASS ALLOY - The invention relates to brass alloys that are substantially lead-free. In the alloys of the invention, lead is replaced with tellurium sulfur or blends of tellurium and sulfur resulting in alloys that exhibit excellent machinability and conductivity. | 12-02-2010 |
20110182767 | COPPER ALLOY, COPPER ALLOY PLATE, AND PROCESS FOR PRODUCING THE SAME - A copper alloy with an excellent stress relaxation resistance including Ni: 0.1 through 3.0 mass %, Sn: 0.01 through 3.0 mass %, P: 0.01 through 0.3 mass % and remainder copper and inevitable impurities, and the Ni content in extracted residues separated and left on a filter having filter mesh size of 0.1 μm by using an extracted residues method accounting for 40 mass % or less of the Ni content in the copper alloy, wherein the extracted residues method requires that 10 g of the copper alloy is immersed in 300 ml of a methanol solution which contains 10 mass % of ammonium acetate, and using the copper alloy as the anode and platinum as the cathode, constant-current electrolysis is performed at the current density of 10 mA/cm | 07-28-2011 |
20120039741 | COPPER ALLOY SHEET FOR ELECTRIC AND ELECTRONIC PARTS - A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 μm or less and a maximum height Rmax is 1.5 μm or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601. | 02-16-2012 |
20120039742 | COPPER ALLOY SHEET FOR ELECTRIC AND ELECTRONIC PARTS - A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 μm or less and a maximum height Rmax is 1.5 μm or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601. | 02-16-2012 |
20120039743 | COPPER ALLOY SHEET FOR ELECTRIC AND ELECTRONIC PARTS - A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 μm or less and a maximum height Rmax is 1.5 μm or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601. | 02-16-2012 |
20120082588 | LEAD-FREE COPPER ALLOY FOR CASTING WITH EXCELLENT MECHANICAL PROPERTIES - Disclosed is a lead-free copper alloy for casting which contains 0.1-0.7% of S, 8% or less (excluding 0%) of Sn, and 6% or less (excluding 0%) of Zn, and in which a sulfide is dispersed and the average spheroidization ratio of the sulfide is 0.7 or greater. Due to this constitution, said lead-free copper alloy for casting has excellent mechanical properties such as strength, high pressure resistance and good machinability and, therefore, is useful as a starting material for faucet metal fittings, water faucet and so on, even though the alloy contains no lead which causes deterioration of water. | 04-05-2012 |
20120288401 | Copper-phosphorus-strontium brazing alloy - The present invention relates to a brazing alloy, and particularly, to a brazing alloy comprising copper (Cu), phosphorus (P), and strontium (Sr) and further including any one element of indium (In), boron (B), silver (Ag), tin (Sn), cesium (Cs), germanium (Ge), and nickel (Ni). The present invention includes 5.0 to 7.5 wt % of phosphorus (P) and 0.1 to 5.0 wt % of strontium (Sr), in which the remainder is composed of copper (Cu). The brazing alloy according to an exemplary embodiment of the present invention comprises copper (Cu), phosphorus (P), and strontium (Sr) unlike the existing alloy element and further includes, as alloy components, one or more elements selected from a group consisting of indium (In), boron (B), silver (Ag), and tin (Sn), such that the brazing alloy includes no silver (Ag) or the silver (Ag) content is remarkably reduced compared to an existing brazing alloy containing silver (Ag). | 11-15-2012 |
20130129561 | LEADLESS BRASS ALLOY EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE - By enhancing a stress corrosion cracking resistance in a leadless brass alloy, specifically by suppressing a velocity of propagation of corrosion cracks in the brass alloy, a straight line crack peculiar to the leadless brass alloy is suppressed, a probability of cracks coming into contact with γ phases is heightened and local corrosion on the brass surface is prevented to suppress induction of cracks by the local corrosion, thereby providing a leadless brass alloy contributable to enhancement of the stress corrosion cracking resistance. The present invention is directed to an Sn-containing Bi-based, Sn-containing Bi+Sb-based or Sn-containing Bi+Se+Sb-based leadless brass alloy excellent in stress corrosion cracking resistance, having an α+γ structure or α+β+γ structure and having γ phases distributed uniformly therein at a predetermined proportion to suppress local corrosion and induction of stress corrosion cracks. | 05-23-2013 |
20130149189 | HIGH-STRENGTH COPPER ALLOY PLATE EXCELLENT IN OXIDE FILM ADHESIVENESS - The present invention is a Cu—Fe—P system copper alloy plate comprising Fe: 0.02-0.5% and P: 0.01-0.25% in mass % with the balance consisting of copper and unavoidable impurities and having the ratio Fe/P of Fe to P in mass % being 2.0 to 5.0, wherein: a ratio of the area of fine crystal grains less than 0.5 μm in equivalent circle diameter to an observation area when a surface is observed by EBSD analysis is 0.90 or less; and the ratio C1s/Cu2p of a peak area of C1s to a peak area of Cu2p on the surface by XPS analysis is 0.35 or less. | 06-13-2013 |
20130189150 | SINTERED BEARING FOR MOTOR-POWERED FUEL INJECTION PUMPS - There is provided a bearing for motor-powered fuel injection pumps, made from Cu—Ni-based sintered alloy, which is able to be obtained at a low cost, having excellent corrosion and abrasion resistances. The bearing contains 10 to 20% by mass of Ni, 5 to 13% by mass of Sn, 0.1 to 0.8% by mass of P, 1 to 6% by mass of C, and a remainder containing Cu and inevitable impurities, and is formed with a Ni—Sn—Cu—P phase containing at least 30% by mass of Sn in a grain boundary, and has a 8 to 18% porosity. The Ni—Sn—Cu—P phase contains 30 to 49% by mass of Ni, 10 to 30% by mass of Cu, 0.5 to 1.5% by mass of P, and a remainder containing Sn and inevitable impurities. | 07-25-2013 |
20140161661 | COPPER ALLOY - The invention relates to a copper alloy that has been subjected to a thermo-mechanical treatment, composed of (in wt %) 15.5 to 36.0% Zn, 0.3 to 3.0% Sn, 0.1 to 1.5% Fe, optionally also 0.001 to 0.4% P, optionally also 0.01 to 0.1% Al, optionally also 0.01 to 0.03% Ag, Mg, Zr, In, Co, Cr, Ti, Mn, optionally also 0.05 to 0.5% Ni, the remainder copper and unavoidable contaminants, wherein the microstructure of the alloy is characterized in that the proportions of the main texture layers are at least 10 vl % copper layer, at least 10 vl % S/R layer, at least 5 vl % brass layer, at least 2 vl % Goss layer, at least 2 vl % 22RD-cube layer, at least 0.5 vl % cube layer, and finely distributed iron-containing particles are contained in the alloy matrix. | 06-12-2014 |
20140170016 | USE OF A COPPER ALLOY - The invention relates to the use of a copper alloy, composed of (in wt %): 51.8 to 84.0% Cu, 15.5 to 36.0% Zn, 0.35 to 3.0% Sn, 0.12 to 1.5% Fe, 0.02 to 1.0% P, optionally also 0.1 to 2.0% Al, optionally also 0.05 to 0.7% Si, optionally also 0.05 to 2.0% Ni, optionally also respectively 0.1 to 1.0% Mn, Co, optionally also respectively 0.01 to 1.0% As, Sb, and unavoidable contaminants, wherein more than 95% of the structure consist of α-mixed crystal, in which at least iron phosphides and/or iron are embedded as deposition particles, for metallic articles in breeding organisms living in seawater. | 06-19-2014 |
20140193292 | COPPER ALLOY SHEET AND METHOD OF MANUFACTURING COPPER ALLOY SHEET - A copper alloy sheet according to one aspect contains 28.0 mass % to 35.0 mass % of Zn, 0.15 mass % to 0.75 mass % of Sn, 0.005 mass % to 0.05 mass % of P, and a balance consisting of Cu and unavoidable impurities, in which relationships of 44≧[Zn]+20×[Sn]≧37 and 32≦[Zn]+9×([Sn]−0.25) | 07-10-2014 |
20140212325 | LEAD FREE DEZINCIFICATION ALLOY AND METHOD OF MAKING SAME - A brass alloy containing trace amounts of iron, manganese and aluminum is disclosed. Phosphorous is added to a zinc, copper melt and combined with the iron, manganese and aluminum to form intermetallics. Additional phosphorous is added so the melt contains between about 0.08 to 0.15% phosphorous. The alloy has tin in the range of 0.15% to 0.35%. | 07-31-2014 |
20140255248 | COPPER ALLOY SHEET AND METHOD FOR MANUFACTURING COPPER ALLOY SHEET - An aspect of the copper alloy sheet contains 5.0 mass % to 12.0 mass % of Zn, 1.1 mass % to 2.5 mass % of Sn, 0.01 mass % to 0.09 mass % of P and 0.6 mass % to 1.5 mass % of Ni with a remainder of Cu and inevitable impurities, and satisfies a relationship of 20≦[Zn]+7×[Sn]+15×[P]+4.5×[Ni]≦32. The aspect of the copper alloy sheet is manufactured using a manufacturing process including a cold finishing rolling process in which a copper alloy material is cold-rolled, the average crystal grain diameter of the copper alloy material is 1.2 μm to 5.0 μm, round or oval precipitates are present in the copper alloy material, the average grain diameter of the precipitates is 4.0 nm to 25.0 nm or a proportion of precipitates having a grain diameter of 4.0 nm to 25.0 nm in the precipitates is 70% or more. | 09-11-2014 |
20140377127 | COPPER ALLOY - The invention relates to a copper alloy that has been subjected to a thermo-mechanical treatment, composed of (in wt %) 15.5 to 36.0% Zn, 0.3 to 3.0% Sn, 0.1 to 1.5% Fe, optionally also 0.001 to 0.4% P, optionally also 0.01 to 0.1% Al, optionally also 0.01 to 0.03% Ag, Mg, Zr, In, Co, Cr, Ti, Mn, optionally also 0.05 to 0.5% Ni, the remainder copper and unavoidable contaminants, wherein the microstructure of the alloy is characterized in that the proportions of the main texture layers are at least 10 vl % copper layer, at least 10 vl % S/R layer, at least 5 vl % brass layer, at least 2 vl % Goss layer, at least 2 vl % 22RD-cube layer, at least 0.5 vl % cube layer, and finely distributed iron-containing particles are contained in the alloy matrix. | 12-25-2014 |
20150318068 | COPPER-ALLOY PLATE FOR TERMINAL/CONNECTOR MATERIAL, AND METHOD FOR PRODUCING COPPER-ALLOY PLATE FOR TERMINAL/CONNECTOR MATERIAL - A copper alloy sheet for terminal and connector materials contains 4.5 mass % to 12.0 mass % of Zn, 0.40 mass % to 0.9 mass % of Sn, 0.01 mass % to 0.08 mass % of P, and 0.20 mass % to 0.85 mass % of Ni with a remainder being Cu and inevitable impurities, a relationship of 11≦[Zn]+7.5×[Sn]+16×[P]+3.5×[Ni]≦19 is satisfied, a relationship of 7≦[Ni]/[P]≦40 is satisfied in a case in which the content of Ni is in a range of 0.35 mass % to 0.85 mass %, an average crystal grain diameter is in a range of 2.0 μm to 8.0 μm, an average particle diameter of circular or elliptical precipitates is in a range of 4.0 nm to 25.0 nm or a proportion of the number of precipitates having a particle diameter in a range of 4.0 nm to 25.0 nm in the precipitates is 70% or more, an electric conductivity is 29% IACS or more, a percentage of stress relaxation is 30% or less at 150° C. for 1000 hours as stress relaxation resistance, bending workability is R/t≦0.5 at W bending, solderability is excellent, and a Young's modulus is 100×10 | 11-05-2015 |
20160102386 | COPPER ALLOY, USE OF A COPPER ALLOY, BEARING HAVING A COPPER ALLOY, AND METHOD FOR PRODUCING A BEARING COMPOSED OF A COPPER ALLOY - The invention relates to a copper alloy such as, for example, CuNi6Sn5Fe2P0.15, which has hard particles such as, for example, Fe3P or Fe2P and optionally solid lubricants such as, for example, hexagonal boron nitrides or graphite. The invention further relates to the use of said copper alloy for a bearing and to a bearing having said copper alloy. The invention further relates to a method for producing a bearing having a copper alloy, wherein a metal powder is produced, for example, by means of melt atomization, hard particles and optional solid lubricants are optionally added to said powder, and the powder is sintered onto a substrate. Finally, the invention relates to an alternative method for producing a bearing, wherein the copper alloy is applied to a substrate by means of casting or plating or wherein the bearing is made completely of the copper alloy. | 04-14-2016 |
20160104550 | COPPER-ALLOY PLATE FOR TERMINAL/CONNECTOR MATERIAL, AND METHOD FOR PRODUCING COPPER-ALLOY PLATE FOR TERMINAL/CONNECTOR MATERIAL - A copper alloy sheet for terminal and connector materials contains 4.5 mass % to 12.0 mass % of Zn, 0.40 mass % to 0.9 mass % of Sn, 0.01 mass % to 0.08 mass % of P, and 0.20 mass % to 0.85 mass % of Ni with a remainder being Cu and inevitable impurities, a relationship of 11≦[Zn]+7.5×[Sn]+16×[P]+3.5×[Ni]≦19 is satisfied, a relationship of 7≦[Ni]/[P]≦40 is satisfied in a case in which the content of Ni is in a range of 0.35 mass % to 0.85 mass %, an average crystal grain diameter is in a range of 2.0 μm to 8.0 μm, an average particle diameter of circular or elliptical precipitates is in a range of 4.0 nm to 25.0 nm or a proportion of the number of precipitates having a particle diameter in a range of 4.0 nm to 25.0 nm in the precipitates is 70% or more, an electric conductivity is 29% IACS or more, a percentage of stress relaxation is 30% or less at 150° C. for 1000 hours as stress relaxation resistance, bending workability is R/t≦0.5 at W bending, solderability is excellent, and a Young's modulus is 100×10 | 04-14-2016 |
20160130684 | COPPER ALLOY FOR USE IN A MEMBER FOR USE IN WATER WORKS - Provided is a copper alloy for use in a member for water works, which has not only a reduced lead content and the lowest possible Ni content, but also a reduced Bi content, and which still exhibits suitable properties. The copper alloy includes: less than 0.5% by mass of Ni; 0.2% by mass or more and 0.9% by mass or less of Bi; 12.0% by mass or more and 20.0% by mass or less of Zn; 1.5% by mass or more and 4.5% by mass or less of Sn; and 0.005% by mass or more and 0.1% by mass or less of P; wherein the total content of Zn and Sn is 21.5% by mass or less, and the balance is a trace element(s) and Cu. | 05-12-2016 |
20160145719 | LOW-LEAD BISMUTH-FREE SILICON-FREE BRASS - The invention relates to a low-lead bismuth-free silicon-free brass alloy with excellent cutting performance, comprising, by the total weight of the brass alloy, 60-65 wt % copper, 0.1-0.25 wt % lead, 0.1-0.7 wt % aluminum, 0.05-0.5 wt % tin, one or more element selected from the group consisting of 0.05-0.3 wt % phosphorus, 0.05-0.5 wt % manganese and 0.001-0.01 wt % boron, and a balance of zinc. | 05-26-2016 |
20220136086 | Lead-free CU-Zn alloy - A lead-free Cu—Zn alloy with improved machining properties compared to the alloy CuZn42, consisting of: 57-59.3 wt % Cu; 0.12-0.17 wt % Fe as a first alternative, or up to 0.06 wt % Fe and 0.3-0.7 wt % Mn as a second alternative; 0.03-0.1 wt % P; up to 1.0 wt % Sn; up to 0.1 wt % Pb; balance Zn together with unavoidable impurities, which are permitted up to 0.05 wt % per element, wherein the sum total of unavoidable impurities does not exceed 0.15 wt %; and wherein the following elements are tolerated up to the following specified contents: up to 0.03 wt % Ni, up to 0.05 wt % Al, up to 0.01 wt % Si, up to 0.01 wt % Cr. | 05-05-2022 |