Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


COBALT BASE

Subclass of:

420 - Alloys or metallic compositions

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
420435000COBALT BASE23
20080232997Method of producing cobalt-platinum magnetic alloys with improved magnetic properties - A method for processing CoPt alloys with improved magnetic properties. The method includes sealing a sample of a CoPt alloy in an evacuated quartz tube, and heating the alloy to a temperature of approximately 1000 degrees C. to homogenize the alloy for approximately 3 hours. The sample is then cooled at a controlled cooling rate of 120-150 degrees C. per minute to 600 degrees C. The sample is then held at 600 degrees C. for 10 hours to promote isothermal ordering. Finally, the sample is quenched in mineral oil.09-25-2008
20100061883HIGH-TEMPERATURE-RESISTANT COBALT-BASE SUPERALLOY - A cobalt-base superalloy chemical composition is disclosed which includes, in % by weight: 25-28 W; 3-8 Al; 0.5-6 Ta; 0-3 Mo; 0.01-0.2 C; 0.01-0.1 Hf; 0.001-0.05 B; 0.01-0.1 Si; and remainder Co and unavoidable impurities. This superalloy can be strengthened by γ′ dispersions and further dispersion mechanisms. Exemplary compositions can provide good oxidation properties and improved strength values at high temperatures.03-11-2010
20100135845Method for Making Cobalt Nanomaterials - A method for generating metallic nanomaterials using acetylenic-bridged metal-carbonyl complexes as a precursor allows control of nanoparticle properties. The novel method produced metallic nanomaterials resistant to oxidation.06-03-2010
20100196190PROCESS FOR RECOVERY OF NICKEL AND COBALT FROM LATERITE ORES USING ION EXCHANGE RESIN - The process, according to the invention, comprises the following stages: (a) processing (1) of the laterite ore (O) by crushing, scrubbing, attrition, separation, and high-intensity magnetic separation; (b) Leaching (2) of the non-magnetic fraction (CN) obtained form the previous stage (a); (c) optionally, neutralization (3) of the effluent from the leaching and/or solid-liquid separation stages (4); (d) treatment of the effluents from stages (b) or (c) using an ion-exchange hybrid system (5) comprising at least one circuit for removal of impurities and at least one circuit for recovery of nickel and cobalt; (e) elution (6) of the ion-exchange resin used; (f) separation, purification, and recovery (7) of the nickel and cobalt.08-05-2010
20130272916MATERIALS OF CONSTRUCTION FOR A GAS TURBINE - The present invention relates to a means to protect gas turbine components against corrosion from a gaseous stream, produced from an oxidation reaction the reaction being conducted in a continuous oxidation reactor10-17-2013
20130287621Method for Recovering Valuable Material from Lithium-Ion Secondary Battery, and Recovered Material Containing Valuable Material - A method for recovering a valuable material from a lithium-ion secondary battery, the method contains: roasting a lithium-ion secondary battery containing a valuable material in a metal battery case thereof to obtain a roasted material; stirring the roasted material with liquid to separate contents containing the valuable material from the inside of the metal battery case; and sorting the contents separated by the separation and the metal battery case to obtain a recovered material containing the valuable material.10-31-2013
20140178244GASEOUS BASED DESULFURIZATION OF ALLOYS - A method for desulfurizing a metal alloy comprises heating the metal alloy to a molten state. A gaseous desulfurizing compound is bubbled through the molten alloy to form a solid sulfur-containing waste phase and a molten reduced-sulfur alloy phase. The solid waste phase and the molten reduced-sulfur alloy phase are separated. The gaseous desulfurizing compound includes a constituent element selected from the group: alkali metals, alkaline earth metals, and rare earth metals.06-26-2014
20140314617DENTAL ALLOY FOR CAD/CAM MACHINING - A dental alloy contains palladium (Pd) and indium (In) for CAD/CAM machining. The dental alloy can further include one component selected from the group consisting of gold (Au), silver (Ag), nickel (Ni), cobalt (Co), and platinum (Pt). The dental alloy has a yield strength of 250 MPa to 450 MPa, breaking elongation of 2% to 8%, metal-ceramic adhesion of 20 MPa to 70 MPa, coefficient of linear thermal expansion of 14.0×1010-23-2014
420436000 Chromium containing 15
20080232998NON-MAGNETIC COBALT-PALLADIUM DENTAL ALLOY - A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt. %, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.09-25-2008
20130121871NON-MAGNETIC COBALT-PALLADIUM DENTAL ALLOY - A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt.%, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.05-16-2013
20130287622METAL ALLOY AND JEWELRY ARTICLES FORMED THEREFROM - An article is formed of a metal alloy that includes the following constituents: (a) cobalt in an amount of between about 50.0% to about 51.0% by weight of the article; (b) tungsten in an amount of between about 21.0% to about 22.0% by weight of the article; (c) chromium in an amount of about 22.0% by weight of the article; (d) nickel in an amount of between about 2.5% to about 3.0% by weight; and (e) molybdenum in an amount of about 5.0% by weight. The article can be in the form of a jewelry article, such as a ring, a bracelet, a necklace, or an earring and can be formed by a shell casting process.10-31-2013
420437000 Aluminum containing 4
420438000 Titanium containing 4
20080260570Heat-Resistant Superalloy - Disclosed is a novel heat-resistant superalloy for turbine disks having a chemical composition consisting of, in mass %, 19.5-55% of cobalt, 2-25% of chromium, 0.2-7% of aluminum, 3-15% of titanium and the balance of nickel and inevitable impurities.10-23-2008
20110194971HEAT-RESISTANT SUPERALLOY - Disclosed is a novel heat-resistant superalloy for turbine disks having a chemical composition consisting of, in mass %, 19.5-55% of cobalt, 2-25% of chromium, 0.2-7% of aluminum, 3-15% of titanium and the balance of nickel and inevitable impurities.08-11-2011
20130243642METALLIC BONDCOAT OR ALLOY WITH A HIGH GAMMA/GAMMA' TRANSITION TEMPERATURE AND A COMPONENT - A metallic coating or alloy is provided, which is nickel based, and includes at least γ and γ′ phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %.09-19-2013
20160168662ALLOY06-16-2016
420439000 Titanium containing 1
20130224067Soft Magnetic Alloy for Magnetic Recording Medium, Sputtering Target Material, and Magnetic Recording Medium - There is provided a soft magnetic alloy for a perpendicular magnetic recording medium having a low coercive force, high amorphous properties, high corrosion resistance, and a high hardness; and a sputtering target for producing a thin film of the alloy. The alloy comprises in at. %: 6 to 20% in total of one or two of Zr and Hf; 1 to 20% of B; and 0 to 7% in total of one or two or more of Ti, V, Nb, Ta, Cr, Mo, W, Ni, Al, Si, and P; and the balance Co and/or Fe and unavoidable impurities. The alloy further satisfies 6≦2×(Zr%+Hf%)−B%≦16 and 0≦Fe%/(Fe%+Co%)<0.20.08-29-2013
420440000 Iron containing 7
20090317286High-temperature member for use in gas turbine - A high-temperature member for use in a gas turbine is formed from a cobalt-based alloy comprising 15-35 wt % of chromium; 0.02-1.5 wt % of silicon; 0.01-0.2 wt % of carbon; at least one kind of metal selected from the group consisting of niobium, tungsten, tantalum and rhenium, the total content of these four metals being controlled not to exceed 10% by atomic ratio of the entirety of the alloy excluding carbon; and at least one metal selected from the group consisting of nickel, manganese and iron, the total content of these metals being within a range of 1-9 wt %, the total content of nickel being controlled not to exceed 5 wt %, and the cobalt-based alloy having both of excellent resistance due to work hardening of the matrix and excellent ductility under room temperature. Then, in order to improve the high-temperature wear resistance, a pre-hardened layer is formed in the surface portion of the member by shot peening12-24-2009
20100209286WELDABLE, CRACK-RESISTANT CO-BASED ALLOY, OVERLAY METHOD, AND COMPONENTS - A wear- and corrosion-resistant alloy, and related application method, where the alloy has by approximate weight %, C 0.12-0.7, Cr 20-30, Mo 7-15, Ni 1-4, and Co balance, wherein the alloy further contains one or more carbide-former elements from the group consisting of Ti, Zr, Hf, V, Nb, and Ta in a cumulative concentration to stoichiometrically offset between about 30% and about 90% of the C in the alloy.08-19-2010
20100329920COBALT-BASED JEWELRY ARTICLE - An article of jewelry and method of producing an article of jewelry, comprising providing a substrate made of a biocompatible medical grade cobalt-based alloy that includes cobalt, chromium and molybdenum. The cobalt-based alloy substrate is formed into a desired shape of the article of jewelry.12-30-2010
20120288399HIGH-HARDNESS HARDFACING ALLOY POWDER - The present invention relates to a high-hardness hardfacing alloy powder, containing: 0.511-15-2012
20130259735BIO-CO-CR-MO ALLOY WITH ION ELUTION SUPPRESSED BY STRUCTURE CONTROL, AND PROCESS FOR PRODUCING SAME - This invention provides a technique for rendering bio-toxicity such as allergy toxicity derived from Ni trace impurity, i.e., nickel toxicity, which is unavoidably present in a bio-Co—Cr—Mo alloy or an Ni-free stainless steel alloy unharmful, characterized in that an element selected from the group consisting of the group 4, 5 and 13 elements of the periodic table, particularly an element selected from the group consisting of the group 4 elements of the periodic table, is added to the alloy composition. The additive element is preferably an element selected from the group consisting of zirconium and titanium, more preferably zirconium.10-03-2013
20130336836Stent Made Of a Cobalt Alloy - A stent made entirely or partially of a cobalt alloy having the following composition: 12-19-2013
20140334968ALLOY FOR HIGH TEMPERATURE TOOLING APPLICATIONS - Thermal fatigue is the predominant mechanism that limits the service life of dies in semi-solid forming of steels since the feedstock to be shaped has a paste-like character. A novel alloy, more resistant to these conditions than any other alloy, has been developed. Eutectic carbides in Stellite alloys are replaced in this novel alloy with molybdenum-rich intermetallic compound particles between dendrites. This novel alloy offers at least 3 times longer service life with respect to Stellite 6 alloy that has been tested under conditions that mimic the steel semi-solid forming process and has been identified as the most suitable. The exceptional performance of the novel alloy is attributed to its outstanding resistance to oxidation and to softening at elevated temperatures and to its cobalt based matrix free from the hard and brittle carbides that have a negative impact on crack growth process.11-13-2014

Patent applications in all subclasses COBALT BASE

Website © 2025 Advameg, Inc.