Class / Patent application number | Description | Number of patent applications / Date published |
420040000 | Rare earth containing | 22 |
20090053092 | FERRITIC STAINLESS STEEL ALLOY - The application describes a lead-free ferritic stainless steel alloy having the following composition, all contents given in percent by weight: | 02-26-2009 |
20090060774 | HIGH-TEMPERATURE ALLOY - An iron-based high-temperature alloy has the following chemical composition (values given being in % by weight):
| 03-05-2009 |
20090196783 | Austenitic stainless steel welded joint and austenitic stainless steel welding material - An austenitic stainless steel welded joint, which comprises by mass %, C: 0.05 to 0.25%, Si: not more than 2%, Mn: 0.01 to 3%, P: 0.05 to 0.5%, S: not more than 0.03%, Cr: 15 to 30%, Ni: 6 to 55%, sol. Al: 0.001 to 0.1% and N: not more than 0.03%, with the balance being Fe and impurities, and satisfies the formula of (Cr+1.5×Si+2×P)/(Ni+0.31×Mn+22×C+14.2×N+5×P)≧1.388, has high creep strength, and moreover, is economical and excellent in weldability. Therefore, the said austenitic stainless steel welded joint can be widely applied as steel pipes, steel plates and so on in such fields where not only high-temperature strength and corrosion resistance but also weldability is required. Each element symbol in the above formula represents the content by mass percent of the element concerned. | 08-06-2009 |
20090232694 | Martensitic stainless steel for welded structures - A martensitic stainless steel for welded structures including by mass %, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 0.05 to 2%, P: 0.03% or less, REM: 0.0005 to 0.1%, Cr: 8 to 16%, Ni: 0.1 to 9% and sol. Al: 0.001 to 0.1%; and further including one or more elements selected from among Ti: 0.005 to 0.5%, Zr: 0.005 to 0.5%, Hf: 0.005 to 0.5%, V: 0.005 to 0.5% and Nb: 0.005 to 0.5%; and O: 0.005% or less, N: 0.1% or less, with the balance being Fe and impurities; and the P and REM content satisfies: P≦0.6×REM. This steel possesses excellent SCC (stress corrosion cracking) resistance in welded sections in Sweet environments. | 09-17-2009 |
20100008813 | HOT AND CORROSION-RESISTANT STEEL - The invention relates to metallurgy, more specifically to chromium- and nickel alloyed steels which are used in reactors (retorts) for magnesium-thermic production of spongy titanium. The inventive hot- and corrosion-resistant steel comprises iron (Fe) in the form of a base, carbon (C), nitrogen (N), manganese (Mn), silicium (Si), chromium (Cr), nickel (Ni), vanadium (V), at least one type of rare-earth metal (P3M) from a group of cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), said steel also contains titanium (Ti) and at least one element from a group of niobium (Nb), tantalum (Ta), zirconium (Zr) and hafnium (Hf) which are used in the form of carbide- and nitride solvents at the following component ratio, in mass %: C 0.04-0.15; N 0.01-0.25; Si 0.1-1.0; Mn 3.0-12.5; Cr 1.0-15.0; Ni 1.0-7.0; V 0.05-0.5; one or several elements of a group of Ce, La, Pr, Nd 0.0001-0.01; and Ti 0.1-2.0; and one or several elements of a group of Nb, Ta, Zr, Hf 0.05-0.2. Said invention makes it possible to increase the hot and corrosion-resistance in aggressive media used for the magnesium-theremic production of spongy titanium and to reduce the contamination thereof with detrimental impurities. | 01-14-2010 |
20100040502 | CREEP-RESISTANT STEEL - A creep-resistant steel is characterized by the following chemical composition (values in % by weight): 9.0 to 12.0 Cr, 0.1 to 0.5 Mn, 2.3 to 3 Ni, 1.5 to 2.0 Mo, 0.1 to 0.4 V, 0.01 to 0.06 Nb, 0.08 to 0.16 C, 0.02 to 0.08 N, 0.004 to 0.012 B, 0.001 to 2 Ta, 0.001 to 0.5 La, 0.0001 to 1 Pd, maximum 0.005 P, maximum 0.005 S, maximum 0.05 Si, maximum 0.005 Sn, the remainder iron and unavoidable impurities. This steel is distinguished, as compared with commercial steels, by a greatly improved creep behavior at temperatures of 550° C. and above. Moreover, it has an improved resistance to embrittlement during long-term aging and comparatively high toughness. The steel is advantageously used as a material for gas turbine rotors which are exposed to high inlet temperatures in order to increase the efficiency of the gas turbine, but is also used for steam turbines. | 02-18-2010 |
20110014083 | STAINLESS STEEL USED FOR OIL COUNTRY TUBULAR GOODS - A stainless steel for an oil country tubular good according to the invention includes, in percent by mass, 0.001% to 0.05% C, 0.05% to 1% Si, at most 2% Mn, at most 0.03% P, less than 0.002% S, 16% to 18% Cr, 3.5% to 7% Ni, more than 2% and at most 4% Mo, 1.5% to 4% Cu, 0.001% to 0.3% rare earth metal, 0.001% to 0.1% sol. Al, 0.0001% to 0.01% Ca, at most 0.05% O, and at most 0.05% N, and the balance consists of Fe and impurities. The stainless steel according to the invention includes REM and therefore has high SCC resistance in a high temperature chloride aqueous solution environment. | 01-20-2011 |
20110123387 | FERRITIC STAINLESS STEEL EXCELLENT IN HEAT RESISTANCE AND TOUGHNESS - A ferritic stainless steel excellent in thermal fatigue resistance and oxidation resistance and also having toughness equivalent to or higher than that of Type 429 does not need to add an expensive element such as Mo or W. Specifically, the ferritic stainless steel includes C: 0.015 mass % or less, Si: 0.5 mass % or less, Mn: 0.5 mass % or less, P: 0.04 mass % or less, S: 0.006 mass % or less, Cr: 16 to 20 mass %, N: 0.015 mass % or less, Nb: 0.3 to 0.55 mass %, Ti: 0.01 mass % or less, Mo: 0.1 mass % or less, W: 0.1 mass % or less, Cu: 1.0 to 2.5 mass %, Al: 0.2 to 1.2 mass %, and the balance of Fe and inevitable impurities. | 05-26-2011 |
20110250088 | FERRITIC-AUSTENITIC STAINLESS STEEL - The invention relates to a duplex stainless steel having austenitic-ferritic microstructure of 35-65% by volume, preferably 40-60% by volume of ferrite and having good weldability, good corrosion resistance and good hot workability. The steel contains 0.005-0.04% by weight carbon, 0.2-0.7% by weight silicon, 2.5-5% by weight manganese, 23-27% by weight chromium, 2.5-5% by weight nickel, 0.5-2.5% by weight molybdenum, 0.2-0.35% by weight nitrogen, 0.1-1.0% by weight copper, optionally less than 1% by weight tungsten, less than 0.0030% by weight one or more elements of the group containing boron and calcium, less than 0.1% by weight cerium, less than 0.04% by weight aluminium, less than 0.010% by weight sulphur and the rest iron with incidental impurities. | 10-13-2011 |
20110286879 | HIGH-Mn AUSTENITIC STAINLESS STEEL AND METAL PARTS FOR CLOTHING ORNAMENT - As a stainless steel for a metal part for clothing ornament capable of working into a complicated form part and having such nonmagnetic properties that the worked part can cope with the detection through needle detecting device is provided a high-Mn austenitic stainless steel having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.03 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass %, provided that these components are contained so that δ cal (mass %) represented by the following equation (1) is not more than 5.5 mass %: | 11-24-2011 |
20120014828 | NON-ORIENTED ELECTRICAL STEEL SHEET AND MANUFACTURING METHOD THEREOF - In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. | 01-19-2012 |
20120177529 | DUPLEX STAINLESS STEEL - A duplex stainless steel excellent in the weldability during large heat input welding and in the stress corrosion cracking resistance in a chloride environment containing corrosive associated gases has a chemical composition consisting, by mass %, of C: 0.03% or less, Si: 0.2 to 1%, Mn: 5.0% or less, P: 0.040% or less, S: 0.010% or less, sol. Al: 0.040% or less, Ni: 4 to 8%, Cr: 20 to 28%, Mo: 0.5 to 2.0%, Cu: more than 2.0% and 4.0% or less and N: 0.1 to 0.35%, and optionally contains one or more selected from among V, Ca, Mg, B and a rare earth metal(s), with the balance being Fe and impurities; wherein the duplex stainless steel satisfies the following formulas: | 07-12-2012 |
20120177530 | STEEL FOR SOLID OXIDE FUEL CELL HAVING EXCELLENT OXIDATION RESISTANCE - Disclosed is steel for a solid oxide fuel cell, which has excellent oxidation resistance, reduces Cr evaporation, has good electrical conductivity and has a thermal expansion coefficient similar to that of a ceramic component such as an electrolyte or an electrode. Specifically disclosed is steel for solid oxide fuel cells, which has excellent oxidation resistance and contains, in mass %, 0.1% or less of C, 0.2% or less of Al, 0.2% or less of Si, 0.4% or less of Mn, 16.0-28.0% of Cr, 1.5% or less of Ni, 1.0% or less of REM and/or Zr in total, 1.0-3.0% of W, and more than 0.2% but 4.0% or less of Cu, with the balance made up of Fe and unavoidable impurities. | 07-12-2012 |
20130309125 | OXIDATION RESISTANT FERRITIC STAINLESS STEELS - A method for making a ferritic stainless steel article having an oxidation resistant surface includes providing a ferritic stainless steel comprising aluminum, at least one rare earth metal and 16 to less than 30 weight percent chromium, wherein the total weight of rare earth metals is greater than 0.02 weight percent. At least one surface of the ferritic stainless steel is modified so that, when subjected to an oxidizing atmosphere at high temperature, the modified surface develops an electrically conductive, aluminum-rich, oxidation resistant oxide scale comprising chromium and iron and a having a hematite structure differing from Fe | 11-21-2013 |
20130315776 | DUPLEX STAINLESS STEEL - A duplex stainless steel, which can suppress precipitation of a σ phase under high heat input welding, is excellent in SCC resistance under high-temperature chloride environments and has a high strength. The duplex stainless steel includes a chemical composition containing, in mass percent, C: at most 0.030%, Si: 0.20 to 1.00%, Mn: at most 8.00%, P: at most 0.040%, S: at most 0.0100%, Cu: more than 2.00% and at most 4.00%, Ni: 4.00 to 8.00%, Cr: 20.0 to 28.0%, Mo: 0.50 to 2.00%, N: 0.100 to 0.350%, and sol. Al: at most 0.040%, the balance being Fe and impurities, and satisfying Expression (1) and Expression (2); a structure having a ferrite rate of at least 50%; and a yield strength of at least 550 MPa or more: | 11-28-2013 |
20140003989 | DUPLEX STAINLESS STEEL | 01-02-2014 |
20140017111 | HIGH-STRENGTH AUSTENITIC STAINLESS STEEL FOR HIGH-PRESSURE HYDROGEN GAS - There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/μm | 01-16-2014 |
20140134039 | AUSTENITIC STAINLESS STEEL - Austenitic stainless steel is disclosed herein. In the described embodiments, the austenitic stainless steel comprises 16.00 wt % of Chromium to 30.00 wt % of Chromium; 8.00 wt % of Nickel to 27.00 wt % of Nickel; no more than 7.00 wt % of Molybdenum; 0.40 wt % of Nitrogen to 0.70 wt % of Nitrogen, 1.0 wt % of Manganese to 4.00 wt % of Manganese, and less than 0.10 wt % of Carbon, wherein the ratio of the Manganese to the Nitrogen is controlled to less than or equal to 10.0. Austenitic stainless steel based on specified minimum PREN (Pitting Resistance Equivalent Number) values is also disclosed. (1) PRE=wt % Cr+3.3×wt % (Mo)+16 wt % N>=25 for N in range of 0.40-0.70. (2) PRE=wt % Cr+3.3×wt % (Mo+W)+16 wt % N>=27 for N in range of 0.40-0.70 with W present. | 05-15-2014 |
20140140883 | QUENCH AND TEMPER CORROSION RESISTANT STEEL ALLOY - A quench and temper steel alloy is disclosed having the following composition in weight percent. | 05-22-2014 |
20140154128 | HEAT-RESISTANT AUSTENITIC STAINLESS STEEL HAVING EXCELLENT CYCLIC OXIDATION RESISTANCE - A heat-resistant austenitic stainless steel comprising C: 0.05 to 0.2%, Si: 0.1 to 1%, Mn: 0.1 to 2.5%, Cu: 1 to 4%, Ni: 7 to 12%, Cr: 16 to 20%, Nb: 0.1 to 0.6%, Zr: 0.05 to 0.4%, Ce: 0.005 to 0.1%, Ti: 0.1 to 0.6%, B: 0.0005 to 0.005%, N: 0.001 to 0.15%, S: 0.005% or less (not including 0%), and P: 0.05% or less (not including 0%), with the balance of iron and unavoidable impurities. | 06-05-2014 |
20160083822 | AUSTENITIC FE-CR-NI ALLOY FOR HIGH TEMPERATURE - An austenitic alloy for high temperature use, particularly for use in resistance heating elements. The alloy includes primarily the elements Fe, Ni, and Cr, and it has the following main composition, given in weight %, Ni 38-48, Cr 18-24, Si 1.0-1.9, C <0.1, and the balance Fe. The alloy provides good hot form stability, good oxidation resistance, and a relatively high electrical resistance coupled with a low change in resistance as a function of temperature. | 03-24-2016 |
20160160329 | STAINLESS STEEL FOR POLYMER FUEL CELL SEPARATOR AND METHOD FOR PREPARING SAME - There are provided a ferrite stainless steel for a polymer fuel cell separator having excellent corrosion resistance and interfacial contact resistance under an operating environment of a polymer fuel cell, and a preparation method of the stainless steel. A stainless steel includes C: 0.02 wt % or less, N: 0.02 wt % or less, Si: 0.4 wt % or less, Mn: 0.2 wt % or less, P: 0.04 wt % or less, S: 0.02 wt % or less, Cr: 25.0 to 32.0 wt %, Cu: 0 to 2.0 wt %, Ni: 0.8 wt % or less, Ti: 0.5 wt % or less, Nb: 0.5 wt % or less, waste Fe and inevitably contained elements. A preparation method of the stainless steel having a second passive film formed on a surface thereof includes forming a first passive film on the surface of the stainless steel by bright-annealing or annealing-pickling the stainless steel; removing the first passive film by pickling the stainless steel in a 10 to 20 wt % sulfuric acid solution at a temperature of 50 to 75° C. for a predetermined time; water-washing the stainless steel; and forming the second passive film by performing a passivation treatment on the stainless steel in the mixture of a 10 to 20 wt % nitric acid and a 1 to 10 wt % fluorine acid at a temperature of 40 to 60° C. for the predetermined time. Accordingly, it is possible to prepare a stainless steel having reduced elution resistance and excellent corrosion resistance and to produce a stainless steel for a polymer fuel cell separator, which has low interfacial contact resistance and excellent long-term performance even under a fuel cell operating condition of 60 to 150° C. and various surface roughness conditions. | 06-09-2016 |