Class / Patent application number | Description | Number of patent applications / Date published |
419036000 | Addition of fugitive material | 8 |
20080232996 | Method for Fabricating Parts by PIM or MICROPIM - “The present invention relates to a method for fabricating parts by an injection molding technique including preparing a feedstock—having at least one powder mixed with a polymer binder solubilized in a solvent, injecting the feedstock into the mold under pressure, debinding, and sintering where the feedstock is maintained at a temperature above a solvent vaporization temperature during the pressing.” | 09-25-2008 |
20100054982 | POWDER, METHOD OF MANUFACTURING A COMPONENT AND COMPONENT - A powder for use in the powder metallurgical manufacture of components is provided. Particularly the subject matter concerns an iron or iron based powder intended for the powder metallurgical manufacturing of components. It is especially suitable for manufacturing of components wherein self-lubricating properties are desired. The subject matter further relates to a method of manufacturing a component from said powder and an accordingly produced component. A diffusion-bonded powder comprising iron or iron-based particles, and particles diffusion-bonded to the iron or iron-based particles is provided. The said particles diffusion-bonded to the iron or iron-based particles may comprise an alloy of Cu and 5% to 15% by weight of Sn. A component is provided which is at least partly formed from such a diffusion-bonded powder. | 03-04-2010 |
20110110811 | High pressure nozzle and method for the manufacture of a high pressure nozzle - High pressure nozzle and method for the manufacture of a high pressure nozzle. The high pressure nozzle has a jet director located within a supply channel leading to a discharge opening. In an area directly surrounding the supply channel median longitudinal axis, the jet director has a free flow cross-section. | 05-12-2011 |
20130343946 | METHOD AND SYSTEM FOR MANUFACTURING SINTERED RARE-EARTH MAGNET HAVING MAGNETIC ANISOTROPY - A method for manufacturing a sintered rare-earth magnet having a magnetic anisotropy, in which a very active powder having a small grain size can be safely used in a low-oxidized state. A fine powder as a material of the sintered rare-earth magnet having a magnetic anisotropy is loaded into a mold until its density reaches a predetermined level. Then, in a magnetic orientation section, the fine powder is oriented by a pulsed magnetic field. Subsequently, the fine powder is not compressed but immediately sintered in a sintering furnace. A multi-cavity mold for manufacturing a sintered rare-earth magnet having an industrially important shape, such as a plate magnet or an arched plate magnet, may be used. | 12-26-2013 |
20160039004 | Feedstock Formulation and Supercritical Debinding Process for Micro-Powder Injection Moulding - The invention uses supercritical fluid technology for removing the binder in the powder injection moulding (PIM) parts. The invention comprises of the feedstock formulation and its supercritical debinding process. In the debinding system, pressure and heat are applied to the carbon dioxide (CO | 02-11-2016 |
419037000 | Additional material is solid | 3 |
20090252638 | Cost-effective titanium alloy powder compositions and method for manufacturing flat or shaped articles from these powders - The invention relates to the cost-effective manufacture of near-net shape titanium articles from sintered powders containing titanium and all required alloying elements. The cost-effective initial powder composition for subsequent room temperature consolidation and sintering contains: (a) 10-50 wt. % of underseparated titanium powder with ≦500 μm in particle size manufactured from underseparated titanium sponge comprising up to 2 wt. % of chlorine and up to 2 wt. % of magnesium. The underseparated titanium powder costs significantly less than that for fully separated powder of completely reduced sponge; (b) 10-90 wt. % of hydrogenated titanium powder, whereby this powder is a mixture of two hydrogenated powders A and B containing different amount of hydrogen: powder A contains amount of hydrogen in the range of 0.2-1 wt. % and powder B contains amount of hydrogen in the range of 2-3.9 wt. %. The powder with high hydrogen content provides purification of underseparated titanium powder during heat treatment and sintering, while the powder with low hydrogen content provides sufficient strength of green compacts as well as perfect structure and quality of the final sintered article; (c) 0-90 wt. % of standard grade refined titanium powder, and/or 5-50 wt. % of alloying metal powders: master alloys or elemental powders. The method includes (a) mixing said underseparated titanium powder, the C.P. titanium powder, the hydrogenated titanium powders containing different amount of hydrogen, (b) compacting the obtained blend by room temperature consolidation such as die pressing, molding, direct powder rolling, cold isostatic pressing, and/or metal injection molding to density at least 60% of the theoretical density, (c) additional crushing titanium hydride powders into fine fragments during consolidation at the pressure of 400-960 MPa to provide forming a uniform network of fine pores promoting healing effects during sintering, chemical cleaning and refining titanium powders in the compacted articles by heating to 300-900° C. and holding for at least 30 minutes to provide a reaction of Cl, Mg, and oxygen, with hydrogen emitted due to decomposition of titanium hydride, (e) heating in vacuum for sintering in β-phase zone of titanium in the temperature range of 1000-1350° C. and holding for at least 30 minutes, and cooling. The new technology allows the purity and mechanical properties of sintered titanium alloys and the manufacture of near-net shape sintered titanium articles to be controlled by a cost-effective process. | 10-08-2009 |
20100183471 | METAL INJECTION MOULDING METHOD - A method for forming an article by metal injection moudling of aluminium or an aluminium alloy. The method comprises the steps of forming a mixture containing an aluminium powder or an aluminum alloy powder or both and optionally ceramic particles, a binder, and a sintering aid comprising a low melting point metal. The mixture is injection moulded and the binder is removed to form a green body. The green body is sintered. The sintering is conducted in an atmosphere containing nitrogen and in the presence of an oxygen getter. | 07-22-2010 |
20150078952 | HIGH-DENSITY MOLDING DEVICE AND HIGH-DENSITY MOLDING METHOD FOR MIXED POWDER - A first die is filled with a mixed powder including a lubricant. A first pressure is applied to the mixed powder to form a mixed powder intermediate compressed body having a density ratio of 85 to 96%, provided that the maximum density of the mixed powder intermediate compressed body that can be molded by applying the first pressure is 100%. The mixed powder intermediate compressed body is heated to the melting point of the lubricant powder. The mixed powder intermediate compressed body is placed in a second die that is pre-heated to the melting point. A second pressure is applied to the mixed powder intermediate compressed body in the second die to form a high-density mixed powder final compressed body. | 03-19-2015 |