Class / Patent application number | Description | Number of patent applications / Date published |
419035000 | Coating | 9 |
20080267806 | Method of manufacturing high frequency magnetic material - A precursor particle having a particle size of 10 nm or more and 1 μm or less, and comprising a first compound selected from an alkoxide, a hydroxide, a sulfate, a nitrate, a carbonate, or a carboxylate of magnetic metal containing at least one metal of Fe and Co, and a second compound selected from an alkoxide or a hydroxide, a sulfate, a nitrate, a carbonate, or a carboxylate of a metal element for forming an oxide, is prepared. Then the precursor particle is heated in a reducing atmosphere to form an insulating particle made of an oxide of the metal element by decomposing the second compound, and to precipitate a particle of the magnetic metal in the insulating particle at a particle size of 1 nm or more and 100 nm or less, thereby manufacturing a high frequency magnetic material. | 10-30-2008 |
20090324439 | Powder Metallurgy Sputtering Targets and Methods Of Producing Same - A method of forming a sputtering target and other metal articles having controlled oxygen and nitrogen content levels and the articles so formed are described. The method includes surface-nitriding a deoxidized metal powder and further includes consolidating the powder by a powder metallurgy technique. Preferred metal powders include, but are not limited to, valve metals, including tantalum, niobium, and alloys thereof. | 12-31-2009 |
20100028195 | SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, METHOD FOR MANUFACTURING SOFT MAGNETIC MATERIAL, AND METHOD FOR MANUFACTURING POWDER MAGNETIC CORE - A soft magnetic material includes a plurality of composite magnetic particles ( | 02-04-2010 |
20130266471 | Vibration Machines for Powder Coating - A method of making a permanent magnet includes a step of forming a coating on an alloy powder by physical vapor deposition. The alloy powder includes neodymium, iron, boron and other metals. The coating includes a component selected from the group consisting of dysprosium, terbium, iron, and the alloys thereof. The alloy powder is vibrated during formation of the coating. Finally, a permanent magnet is formed from the coated powder, the permanent magnet having a non-uniform distribution of dysprosium and/or terbium. A method of making a permanent magnet using a vibrating transport belt is also provided. | 10-10-2013 |
20130266472 | Method of Coating Metal Powder with Chemical Vapor Deposition for Making Permanent Magnets - A method of making a permanent magnet includes a step of contacting a powder with a metal-containing vapor to form a coating on the powder. The alloy powder includes neodymium, iron, and boron. The metal-containing vapor includes a component selected from the group consisting of dysprosium, terbium, iron and alloys thereof. A permanent magnet is formed from the coated powder by compaction, sintering and subsequent heat treatment. | 10-10-2013 |
20150050178 | Soft Magnetic Composite Materials - A soft magnetic composite (SMC) material is formed from atomized ferromagnetic particles. The particles of a predetermined size range are formed and are coated with at least one layer of electrically insulating nano-sized inorganic fillers to form insulated ferromagnetic powder as the SMC material. The particles are further coated with a lubricating agent to facilitated demoulding. | 02-19-2015 |
20150321253 | SURFACE TREATMENT OF POWERS - A powder treatment method includes loading powder into a fluidized bed vessel. At least some of the powder is fluidized in the fluidized bed vessel using an inert gas. While fluidized, the powder is heated in the fluidized bed vessel. A surface treatment coating is then applied to the powder. | 11-12-2015 |
20160160700 | SINTERED ALLOY VALVE GUIDE AND ITS PRODUCTION METHOD - To provide a sintered alloy valve guide having high thermal conductivity and excellent wear resistance, which can be used in engines subjected to a large thermal load due to downsizing, direct injection and supercharging, the sintered alloy has a composition comprising by mass 10-90% of Cu, 0-10% of Cr, 0-6% of Mo, 0-8% of V, 0-8% of W, and 0.5-3% of C, the balance being substantially Fe and inevitable impurities, the total amount of Cr, Mo, V and W being 2% or more, and a structure comprising an Fe-based alloy phase, a Cu or Cu-based alloy phase, and a graphite phase. | 06-09-2016 |
20180023167 | BINDER COMPOSITIONS AND PROCESSES OF PREPARING IRON ORE PELLETS | 01-25-2018 |