Class / Patent application number | Description | Number of patent applications / Date published |
419029000 | Subsequent heat treatment (e.g., annealing, etc.) | 29 |
20090041611 | BRAZE ALLOY COMPOSITION WITH ENHANCED OXIDATION RESISTANCE AND METHODS OF USING THE SAME - A cobalt-based braze alloy composition comprises: 22 to 24.75% chromium by weight; 9 to 11% nickel by weight; 6.5 to 7.6% tungsten by weight; 3 to 4% tantalum by weight; 0.55 to 0.65% carbon by weight; 0.3 to 0.6% zirconium by weight; 0.15 to 0.3% titanium by weight; 1.5 to 2.6% boron by weight; 1 to 10% silicon by weight; and cobalt. There are also provided methods of using the same. | 02-12-2009 |
20090053090 | Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy - It is an object to provide an inexpensive alloy for heat dissipation having a small thermal expansion coefficient as known composite materials, a large thermal conductivity as pure copper, and excellent machinability and a method for manufacturing the alloy. In particular, since various shapes are required of the alloy for heat dissipation, a manufacturing method by using a powder metallurgy method capable of supplying alloys for heat dissipation, the manufacturing costs of which are low and which take on various shapes, is provided besides the known melting method. The alloy according to the present invention is a Cu—Cr alloy, which is composed of 0.3 percent by mass or more, and 80 percent by mass or less of Cr and the remainder of Cu and incidental impurities and which has a structure in which particulate Cr phases having a major axis of 100 nm or less and an aspect ratio of less than 10 are precipitated at a density of 20 particles/μm | 02-26-2009 |
20090081067 | Method of fabricating rare-earth sintered magnet and method of fabricating rare-earth bonded magnet - A method of fabricating a rare-earth based sintered magnet having improved magnetic and mechanical characteristics is offered. Also, a method of fabricating a rare-earth bonded magnet having improved magnetic and mechanical characteristics is offered. The method of fabricating the rare-earth based sintered magnet is started with preparing powder of an alloy including a rare-earth element and a transition metal. The powder of the alloy is mixed with an additive. The mixture is compression molded and irradiated with microwaves to cause the powder to self-heat. As a result, the mixture is sintered. | 03-26-2009 |
20090317279 | SELECTIVE SINTERING OF COMPACTED COMPONENTS - One embodiment includes compacting a powder material using at least a first magnetic field to form a compact and selectively sintering a first portion of the compact and leaving a second portion of the compact unsintered to form a component. | 12-24-2009 |
20100034687 | COMPOUND MAGNETIC POWDER AND MAGNETIC POWDER CORES, AND METHODS FOR MAKING THEM THEREOF - The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt. % and the content of powder B is 4-50 wt. %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases. The decrease of magnetic permeability of magnetic powder core resulting from a traditional insulating agent is remedied and the initial magnetic permeability of magnetic powder core is improved by taking advantage of soft magnetic properties of Fe-based amorphous powder. | 02-11-2010 |
20110103995 | IRON-BASED PRE-ALLOYED POWDER - A pre-alloyed iron-based powder is provided including small amounts of alloying elements which make possible a cost efficient manufacture of sintered parts. The pre-alloyed iron-based powder comprises 0.2-1% by weight of Cr, 0.05-0.3% by weight of Mo, 0.1-1% by weight of Ni, 0.09-0.3% by weight of Mn, 0.01% by weight or less of C, less than 0.25% by weight of O, and less than 1% by weight of inevitable impurities, the balance being iron. | 05-05-2011 |
20110280759 | METHOD FOR PRODUCING SINTERED COMPACT - In a method for producing a sintered compact, a composition containing metal powder and an organic binder is formed into a given shape. When baking is performed by using a baking furnace inside of which a jig containing silica is provided, a furnace atmosphere of the baking furnace is set to be an atmosphere of inert gas, a furnace pressure is controlled to be 0.1 kPa or more but 100 kPa or less, and the furnace pressure during baking is increased at a time when the process is in the middle of heating-up. | 11-17-2011 |
20120039739 | CUTTER RINGS AND METHOD OF MANUFACTURE - Disclosed herein is a ring cutter for a tunneling apparatus, the ring cutter formed by a process in one form comprising several steps. In one form, this mold is sacrificial, and may be a pair of parallel cylinders such as an outer and an inner cylinder with a gap there between. In one manufacturing process, a single mold is used to produce multiple cutters which are cast simultaneously within the single mold. In one form, the mold is formed in the final shape of the cutter, such that the cutter requires no further machining to be used in a tunneling apparatus. Another step being: disposing a volume of powdered metal, such as a nickel based alloy, into the mold. The powdered metal may then be subjected to isostatic gas pressures, and elevated sintering temperatures simultaneously (HIP) with the isostatic gas pressure to consolidate the powdered metal. | 02-16-2012 |
20120058003 | Nd-Fe-B PERMANENT MAGNETIC MATERIAL AND PREPARATION METHOD THEREOF - The present disclosure discloses a permanent magnetic material comprising an Nd—Fe—B alloy and an additive including at least a cobalt ferrite, and a method for preparing a permanent magnetic material. The method comprises steps of mixing an Nd—Fe—B alloy and an additive including at least a cobalt ferrite to obtain a mixture; magnetically orienting and pressing the mixture in a magnetic filed; and sintering and tempering the mixture under the protection of vacuum or an inert gas. | 03-08-2012 |
20120082587 | HIGH STRENGTH LOW ALLOYED SINTERED STEEL - A water-atomised iron-based steel powder is provided which comprises by weight-%: 0.45-1.50 Ni, 0.30-0.55 Mo, less than 0.3 Mn, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, less than 0.5 of unavoidable impurities, and the balance being iron, and where Ni and Mo have been alloyed by a diffusion alloying process. | 04-05-2012 |
20120177527 | BEARING STEELS - There is provided a novel bearing steel composition and a method of forming a bearing. The bearing steel composition comprises: Carbon 0.4 to 0.8 wt %; Nitrogen 0.1 to 0.2 wt %; Chromium 12 to 18 wt %; Molybdenum 0.7 to 1.3 wt %; Silicon 0.3 to 1 wt %; Manganese 0.2 to 0.8 wt %; and Iron 78 to 86.3 wt %. | 07-12-2012 |
20130004359 | System and method for making a structured material - A system for forming a bulk material having insulated boundaries from a metal material and a source of an insulating material is provided. The system includes a heating device, a deposition device, a coating device, and a support configured to support the bulk material. The heating device heats the metal material to form particles having a softened or molten state and the coating device coats the metal material with the insulating material from the source and the deposition device deposits particles of the metal material in the softened or molten state on the support to form the bulk material having insulated boundaries. | 01-03-2013 |
20130039797 | MANUFACTURE OF HIGH-PERFORMANCE NEODYMIUM IRON BORON PERMANENT MAGNET MATERIAL - The invention relates to a method of manufacturing high-performance neodymium iron boron permanent magnet material, which improves the coercive force of a magnet by replacing Dy with heavy rare earth element Tb, and simultaneously reduces the production cost by replacing Nd with a small amount of Pr. The neodymium iron boron permanent magnet material containing Pr and Tb comprises (Nd,Pr) | 02-14-2013 |
20140065004 | Low-Cost Double-Main-Phase Ce Permanent Magnet Alloy and its Preparation Method - The invention discloses a low-cost double-main-phase Ce permanent magnet alloy and its preparation method, and belongs to technical field of rare earth permanent magnet material. The Ce permanent magnet alloy has a chemical formula of (Ce | 03-06-2014 |
20140119976 | ZINC-MODIFIED FERRITIC STAINLESS STEELS AND MANUFACTURING METHOD THEREOF - The present invention discloses zinc-modified ferritic stainless steels and a manufacturing method thereof. The chemical composition of the ferritic stainless steels comprises 14-16 wt % chromium, 0.001-4 wt % zinc, 0.001-0.02 wt % nitrogen, 0.003-0.015 wt % carbon and the remaining of weight percentage of the composition is iron. By adding zinc into the composition, the ferritic stainless steels of the present invention have stronger capacity of corrosion resistance and lower manufacturing cost, as compared to the conventional stainless steels. | 05-01-2014 |
20140127072 | Continuous sintering method for rare earth permanent magnetic alloy and equipment therefor - A continuous sintering method for rare earth permanent magnetic alloy comprises: connecting a preparation chamber, a glove chamber and a sealed transmission chamber, a sealed chamber, a charging chamber, a preheating chamber, a heating and de-airing chamber, a sintering chamber and a cooling chamber one after another. A press formed blank of rare earth permanent magnetic alloy powder is transmitted under oxygen free condition, and processed with heating and de-airing, sintering and cooling. The preparation chamber, the glove chamber and the sealed transmission chamber are transmitted by bottom rollers, transmissions of other chambers are provided on a top portion of each chamber, and conveyed by roller rails. The rollers of the charging rack are suspended on rails of the transmissions. The drawer model charging rack is capable of loading multiple charging box. | 05-08-2014 |
20140219854 | Method of Consolidating/Molding Near Net-Shaped Components Made from Powders - A method for consolidating a pre-form made of powder, comprising: (a) placing the pre-form between smart susceptors; (b) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (c) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (d) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation. | 08-07-2014 |
20140255240 | POWDER METALLURGY METHODS FOR THE PRODUCTION OF FINE AND ULTRAFINE GRAIN TI AND TI ALLOYS - A process includes sintering hydrogenated titanium or titanium hydride (TiH | 09-11-2014 |
20140328713 | Double-alloy NdFeB rare earth permanent magnetic material and manufacturing method thereof - A double-alloy NdFeB rare earth permanent magnetic material and manufacturing method thereof are provided. The method comprises respectively melting an A1 alloy comprising heavy rare earth such as Dy, Tb, Ho and Gd as well as an A2 alloy comprising light rare earth such as La, Ce, Pr and Nd; mixing the A1 alloy and the A2 alloy by a two-dimensional or three-dimensional mixer with a ratio of A1/A2=0˜0.5 under protection of nitrogen; producing powder in a jet mill after mixing; collecting fine powder; putting and mixing the powder and the fine powder in the two-dimensional or three-dimensional mixer; putting into a magnetic field pressing machine for pressing under the protection of the nitrogen after mixing and producing permanent magnetic products by sintering, aging, etc. The present invention can obviously decrease rare earth utilization and increase a magnetic energy product and coercivity of the rare earth permanent magnet. | 11-06-2014 |
20140348689 | NICKEL ALLOY - A nickel-base alloy having the following composition (in weight percent unless otherwise stated): Cr 10.5-15.0; Co 1.7-8.8; Fe 0-5.9; Si 0-0.65; Mn 0-0.65; Mo 0.3-2.3; W 2.3-4.4; Al 2.7-4.1; Nb 1.0-4.2; Ti 1.0-3.0; Ta 2.0-5.0; Hf 0.0-0.6; C 0.02-0.06; B 0.015-0.035; Zr 0.035-0.11; S<20 ppm; P<60 ppm; the balance being Ni and incidental impurities. The alloy has an improved combination of properties (principally resistance to surface environmental damage and dwell fatigue crack growth) compared with known alloys, and is intended to operate for prolonged periods of time above 700° C., and up to peak temperatures of 800° C. | 11-27-2014 |
20140356217 | METHOD FOR PREPARING R-FE-B BASED SINTERED MAGNET - A method for preparing an R—Fe—B based sintered magnet. The method includes: 1) preparing a R | 12-04-2014 |
20150064048 | METHOD AND APPARATUS FOR PRODUCING THREE-DIMENSIONAL OBJECTS WITH IMPROVED PROPERTIES - Method for fabricating a three-dimensional object by successive consolidation, layer by layer, of selected regions of a layer of powder, consolidated regions corresponding to successive sections of the three-dimensional object, comprising in order:
| 03-05-2015 |
20150364251 | SINTERED MAGNET PRODUCTION METHOD - A method having a pulverizing process in which a lump of alloy of a material for a sintered magnet is pulverized by a method including a hydrogen pulverization method, filling process wherein a cavity is filled with alloy powder obtained by pulverizing process, an orienting process wherein alloy powder is magnetically oriented by applying magnetic field to alloy powder, and sintering process wherein alloy powder is sintered by heating it according to predetermined temperature history. In the sintering process, alloy powder is heated in inert-gas atmosphere at higher pressure than atmospheric pressure until temperature reaches predetermined pressurization maintenance temperature which is higher than hydrogen desorption temperature and equal to or lower than sintering temperature. By performing the heating treatment in a pressurized inert gas, hydrogen-gas molecules remaining in the alloy powder are prevented from suddenly desorbing from alloy powder, so that the cracking of the sintered magnets hardly occurs. | 12-17-2015 |
20160032416 | GAS TURBINE ENGINE AIRFOIL IMPINGEMENT COOLING - A method of manufacturing an airfoil includes the steps of depositing multiple layers of powdered metal onto one another. The layers are joined to one another with reference to CAD data relating to a particular cross-section of an airfoil. The airfoil is produced with leading and trailing edges joined by spaced apart pressure and suction sides to provide an exterior airfoil surface. An exterior wall provides the exterior airfoil surface at the leading edge. An impingement wall is integrally formed with the exterior wall to provide an impingement cavity between the exterior wall and the impingement wall. Multiple impingement holes are provided in the impingement wall. The impingement holes are spaced laterally across the impingement wall. | 02-04-2016 |
20160052056 | ENHANCED ELECTRON BEAM GENERATION - A method for forming a three dimensional article through successively depositing individual layers of powder material that are fused together with an electron beam from an electron beam sources so as to form the article. Providing a model of said three-dimensional article; a vacuum chamber having at least a first and a second section, powder material that are fused together is provided in said first section, at least one electron beam source is provided in said second section, wherein said first and second sections are openly connected to each other. Directing an electron beam from said at least one electron beam source over said work table to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article while supplying a gas to said second section of said vacuum chamber. | 02-25-2016 |
20160107230 | METHOD AND ASSEMBLY FOR PRODUCTION OF A MECHANICAL COMPONENT BY SINTERING A PULVERULENT METALLIC MATERIAL - A method and an assembly for production of a mechanical component by sintering a pulverulent material, the method including: providing a pulverulent metallic material including grains, the pulverulent metallic material having a determined melting temperature; agglomerating a given quantity of the pulverulent metallic material under pressure inside a cavity; providing thermal energy to the given quantity of pulverulent metallic material to bring it to a given temperature below the melting temperature; and shocking the given quantity of agglomerated pulverulent metallic material and brought to the given temperature to bind the grains of the pulverulent metallic material to each other to obtain one solid body. The one solid body is thus maintained under pressure and thermal energy accumulated in the solid body is made to dissipate to obtain the mechanical component. | 04-21-2016 |
20160107236 | METHODS OF MAKING PARTS FROM AT LEAST ONE ELEMENTAL METAL POWDER - One aspect of the disclosure relates to a method of making a part from at least one elemental metal powder. The part has a near-net shape, a part volume, and a part density. The method includes providing a sintered preform having a sintered density and separating a portion from the sintered preform. The portion has a portion volume exceeding the part volume and a portion shape different from the near-net shape of the part. The method also includes thermally cycling the portion for a thermal-cycling time period at a thermal-cycling pressure while superplastically deforming the portion to form the part having the near net shape and the part density. | 04-21-2016 |
20160189837 | R-T-B BASED SINTERED MAGNET AND METHOD FOR PRODUCING R-T-B BASED SINTERED MAGNET - To provide an R-T-B based sintered magnet having high B | 06-30-2016 |
20170232517 | METHOD AND SYSTEM FOR PRODUCING FUNCTIONALLY GRADED STRUCTURES IN POWDER BED FUSION PROCESSING | 08-17-2017 |