Class / Patent application number | Description | Number of patent applications / Date published |
419006000 | Powder next to powder | 69 |
20080199343 | Method for bonding powder metallurgical parts - Method for forming a unitary component from a plurality of powder metallurgy compacts. The method in some embodiments includes fluidizing first and second surfaces, wherein a first powder metallurgy compact defines the first surface and a second powder metallurgy compact defines the second surface. The method also includes joining the fluidizing first and second surfaces to form a bonded structure and thermally treating the bonded structure to fuse the first and second compacts into a unitary component. | 08-21-2008 |
20080279710 | Method of producing exfoliated graphite composite compositions for fuel cell flow field plates - A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity. | 11-13-2008 |
20090041607 | Method for the production of a sealing segment, and sealing segment to be use in compressor and turbine components - A method is provided for producing a sealing segment for use in compressor and turbine components, by powder injection molding, the method comprising the following steps: a) preparing a first homogeneous mixture of a metal powder or a mixture of metal powders or a ceramic powder or a mixture of ceramic powders and at least one binding agent; b) producing a first molded article by injection molding the first mixture; c) preparing a second homogeneous mixture of a metal powder or a mixture of metal powders or a ceramic powder or a mixture of ceramic powders and at least one binding agent, the second mixture being selected to exhibit a lower abrasion resistance than the first mixture following a subsequent joint sintering process; d) producing a second molded article as a rub strip by injection molding the second mixture; and e) joining the first and second molded articles to produce the sealing segment. A sealing segment is also provided for use in compressor and turbine components, composed of at least one first molded article as a base element and at least one second molded article having lower abrasion resistance than the first molded article, as a rub strip, the first and the second molded articles each being produced by powder injection molding. | 02-12-2009 |
20090104065 | METHOD OF MAKING AN ARTICLE - A method of making an article having at least one re-entrance surface includes the steps of (a) forming a layer of metal powder on a base, (b) selectively laser fusing portions of the layer, and (c) repeating steps (a) and (b) to form the article, each step (a) being performed on the preceding layer characterised in that prior to performing step (a) in a layer which will initiate the formation of a re-entrant feature reversibly bonding at least some of the unfused underlying powder such that it is stable under the application of the laser | 04-23-2009 |
20100021333 | Method of forming hollow part - A method of forming a hollow part from a mixture is disclosed. The method may include rotationally molding the mixture into a green part. Additionally, the method may include debinding the green part into a brown part. The method may also include sintering the brown part into the hollow part. | 01-28-2010 |
20100028190 | METHOD OF MAKING POWDER METAL PARTS USING SHOCK LOADING - A method of preparing a titanium-based metal matrix composite component. The method includes combining a titanium alloy-based matrix and a titanium-based ceramic reinforcement to form one or more mixtures, placing the mixture or mixtures into a mold, compacting the mixture or mixtures by shock loading, and sintering the compacted mixture or mixtures. In one form, the various mixtures may include differing levels of reinforcement concentration. In this way, different portions of a component produced by the present method may be made up of different mixtures from other portions of the manufactured component, thereby facilitating tailored mechanical or related structural properties. | 02-04-2010 |
20100028191 | Method for Producing Tooth Replacements and Auxiliary Dental Parts - In a method for forming a dental part, a laser beam is guided over a powder layer of biocompatible material. The laser is guided by a computer controlled laser scanning system based on data representing the shape of the cross-section through the shaped body. The powder is substantially melted by the laser beam to form a layer in the shaped body, to build the shaped body entirely from layers of laser-melted material. | 02-04-2010 |
20100196188 | Method of producing a steel moulding - The invention relates to a method of producing a steel moulding using a sinter powder with a base of iron containing at least one non-ferrous metal selected from a group comprising Mn, Cr, Si, Mo, Co, V, B, Be, Ni and Al, the rest being Fe and unavoidable impurities resulting from the manufacturing process, comprising the steps of preparing the sinter powder, compacting the sinter powder to produce a green compact in a mould, sintering the green compact under a reducing atmosphere and then cooling and hardening, characterised in that the total proportion of non-ferrous metals in the sinter powder is selected from a range with a lower limit of 1% by weight and an upper limit of 60% by weight, and the sinter powder is sintered to an at least approximately completely austenitic structure, and hardening takes place by subjecting the steel moulding to mechanical load so that the austenitic structure is transformed at least partially to a martensitic structure. | 08-05-2010 |
20100310404 | APPARATAUS AND METHOD FOR PRODUCING A THREE-DIMENSIONAL OBJECT - The invention concerns an apparatus ( | 12-09-2010 |
20100322812 | METHOD OF FORMING COMPOSITE POWDER METAL GEAR - A forged composite gear and a method of making a forged composite powder metal gear. The forged composite gear includes a plurality of teeth extending from a core, a first section having a first powder metal material, a second section having a second powder metal material and a variable boundary profile. The variable boundary profile is formed between the first section and the second section, whereby said variable boundary profile exhibits greater tooth wear resistance on the teeth and greater impact resistance in the core. | 12-23-2010 |
20110008198 | METHOD FOR MANUFACTURING A PLATE-TYPE HEAT PIPE - A method for manufacturing a plate-type heat pipe includes providing a mold including a first cavity and a plurality of second cavities and depositing cores into the mold. Each core has a first portion in the first cavity and a second portion in a corresponding second cavity. First and second metal powder are filled into the mold. The cores are then removed from the mold to form a green piece by the first and second metal powder, which has first and second chambers therein. The green piece is sintered, whereby the first metal powder forms an outer wall of the heat pipe and the second metal powder forms a wick structure. The heat pipe has a heat absorbing portion having the first chambers and fins having the second chambers communicating with the first chambers. | 01-13-2011 |
20110027119 | METHOD FOR MAKING PARTS WITH AN INSERT MADE OF A METAL-MATRIX COMPOSITE MATERIAL - The invention relates to a method for making a metal part that comprises a reinforcement ( | 02-03-2011 |
20110044836 | POWDER METAL FRICTION STIR WELDING TOOL AND METHOD OF MANUFACTURE THEREOF - A friction stir tool has an axis of rotation and a welding tip that is made of powdered metal material. | 02-24-2011 |
20110158842 | PROCESS FOR MANUFACTURING COMPOSITE SINTERED MACHINE COMPONENTS - In a process for manufacturing composite sintered machine components, the composite sintered machine component has an approximately cylindrical inner member and an approximately disk-shaped outer member, the inner member has pillars arranged in a circumferential direction at equal intervals and a center shaft hole surrounded by the pillars, and the outer member has holes corresponding to the pillars of the inner member and a center shaft hole corresponding to the center shaft hole of the inner member and connected to the holes. The process comprises compacting the inner member and the outer member individually using an iron-based alloy powder or an iron-based mixed powder so as to obtain compacts of the inner member and the outer member, tightly fitting the pillars of the inner member into the holes of the outer member, and sintering the inner member and the outer member while maintaining the above condition so as to bond them together. A circumferential side surface facing a circumferential direction of the pillar of the inner member and a circumferential side surface facing a circumferential direction of the hole of the outer member are interference fitted at 0 to 0.03 mm of the interference. A radial side surface facing a radial direction of the pillar of the inner member and a radial side surface facing a radial direction of the hole of the outer member are fitted so as to be one of being interference fitted at not more than 0.01 mm of the interference and being through fitted. | 06-30-2011 |
20110305590 | METHOD OF FABRICATING AN OBJECT - A method of fabricating an object is disclosed. A first layer of powder is deposited onto a substrate in a configuration defining a first cross-section of the object, and is consolidated by laser irradiation. To fabricate the object, further layers of powder are deposited onto the sintered first layer of powder to define further cross-sections of the object. The further layers are consolidated. A heat source is applied to the substrate to mitigate distortion of the substrate during fabrication of the object. | 12-15-2011 |
20120100030 | HEAT TREATMENTS OF ALM FORMED METAL MIXES TO FORM SUPER ALLOYS - A method of forming an article includes forming a layer of a mixture of at least two distinct metal powders selected such that when combined they are chemically in the proportions of a superalloy containing a gamma prime phase, and fusing the powders locally without diffusion to define the shape of a part of the article such that the materials of the distinct metal powders remain substantially chemically segregated forming regions of different chemical composition. The method further includes repeating the forming and fusing until the derived article is formed, and heat treating the finished article such that at least one of the distinct separate materials diffuses to form a gamma prime phase containing superalloy with the other. | 04-26-2012 |
20120237386 | CEMENTED CARBIDE - METALLIC ALLOY COMPOSITES - A method of making a composite sintered powder metal article includes providing a first powder comprising hard particles and a powdered binder in a first region of a mold. Providing a second powder comprising a metal or metal alloy powder in a second region of the mold, wherein the second powder contacts the first powder and comprises at least one of a metal powder and a metallic alloy powder. The first powder and the second powder are consolidated in the mold to provide a green compact. The green compact is sintered to provide a composite sintered powder metal article comprising a cemented hard particle region formed from the first powder and metallurgically bonded to a metallic second region formed from the second powder. | 09-20-2012 |
20120321498 | COMPOSITE CEMENTED CARBIDE ROTARY CUTTING TOOLS AND ROTARY CUTTING TOOL BLANKS - Composite articles, including composite rotary cutting tools and composite rotary cutting tool blanks, and methods of making the articles are disclosed. The composite article includes an elongate portion. The elongate portion includes a first region composed of a first cemented carbide, and a second region autogenously bonded to the first region and composed of a second cemented carbide. At least one of the first cemented carbide and the second cemented carbide is a hybrid cemented carbide that includes a cemented carbide dispersed phase and a cemented carbide continuous phase. At least one of the cemented carbide dispersed phase and the cemented carbide continuous phase includes at least 0.5 percent by weight of cubic carbide based on the weight of the phase including the cubic carbide. | 12-20-2012 |
20130078132 | Method for Integrally Forming Multiple Metal Materials as a Metal Object - An integral forming method for a composite metal includes: a preparation step including preparing powders of at least two metals or alloys; a formation step including producing a single blank from the powders of one of the at least two metals or alloys by pressing molding or metal injection molding, and then producing a composite metal blank from the single blank and the powders of a remainder of the at least two metals or alloys; and a sintering step including sintering the composite metal blank into a composite metal product. The processing procedures are simplified, and the production is easier. Limitation to the choices of materials is small. The bonding strength of the composite metal is enhanced. | 03-28-2013 |
20130115125 | METHOD FOR PRODUCING REGENERATED TARGET - A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them. | 05-09-2013 |
20130121868 | METHOD OF MANUFACTURING A WELD-FREE APPARATUS FOR CONNECTION OF DISSIMILAR METALS USING FUNCTIONALLY GRADED COMPOSITIONALLY CONTROL POWDER METALLURGY AND HOT ISOSTATIC PROCESSING METHODS - A method of manufacturing a weld-free apparatus for use in the connection of dissimilar metals includes the steps of providing a mold designed to replicate a reverse of the apparatus, introducing a low alloy, ferritic steel composition atomized powder into a first portion of the mold, introducing a series of atomized powders incrementally into a second portion of the mold to form a transition region between the ferritic steel composition and an austenitic stainless steel composition, and introducing an austenitic stainless steel composition atomized powder into a third portion of the mold. The method further includes the step of consolidating and melting the atomized powders in a high temperature, high pressure inert gas atmosphere to form the apparatus. | 05-16-2013 |
20130156626 | METHOD FOR MANUFACTURING A PART BY METAL INJECTION MOULDING - A method for manufacturing a part includes metal injection molding of metal powder mixed with a binder to produce individual components of the part as separately molded green compact sections which are then debindered to form brown compact sections. At least one of the brown compact sections is subjected to a pre-sintering process to undergo a first shrinkage. The pre-sintered brown compact section and a further brown compact section are joined together to form a multi-part brown compact which is subsequently subjected to a main sintering process, where the pre-sintered brown compact section undergoes less shrinkage than the further brown compact section to draw together and firmly connect the pre-sintered brown compact section and the further brown compact section. | 06-20-2013 |
20130177468 | Method for Manufacturing Dental Implant and Dental Implant - A dental implant for preventing elution of metal when applied within an oral cavity and preventing the occurrence of mismatching (bumpy occlusion or the like) when fixed in place, and its manufacturing method are provided. The abutment is manufactured through steps including molding a titanium molded body composition to obtain a titanium molded body, molding a ceramic molded body composition to obtain a ceramic molded body, assembling the titanium molded body and the ceramic molded body together to obtain an assembled body, degreasing the assembled body so that the titanium molded body becomes a titanium degreased body and the ceramic molded body becomes a ceramic degreased body, and sintering the assembled body to transform the titanium degreased body into a titanium member and to transform the ceramic degreased body into a ceramic member so that the titanium member and the ceramic member are firmly fixed and joined together. | 07-11-2013 |
20130216420 | MANUFACTURING METHOD OF MULTILAYER SHELL-CORE COMPOSITE STRUCTURAL COMPONENT - A manufacturing method of a multilayer shell-core composite structural component comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughening ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; (4) sintering the blank to obtain the multilayer shell-core composite structural component. The multilayer shell-core composite structural component has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance. | 08-22-2013 |
20130259732 | METHOD FOR PRODUCING ENGINE COMPONENTS WITH A GEOMETRICALLY COMPLEX STRUCTURE - The present invention relates to a method for manufacturing thermally stressed engine components having a geometrically complex structure by metal injection moulding of metal powder mixed with a binder, by which method individual parts of the engine component are produced as separately moulded green compact sections and then as debindered brown compact sections which are joined together to form a two-part or multi-part brown compact and sintered in the assembled state, with the brown compact sections having differing shrinkage properties in the sintering process, depending on the type and size of the metal powder used, with at least one more heavily shrinking first brown compact section being automatically pressed against at least one second brown compact section during sintering of the assembled brown compact. It is provided that connecting elements in the form of positively engaging projections and recesses are provided at the joining surfaces of the brown compact sections to be joined and having differing shrinkage in such a way that during sintering of the assembled brown compact, the brown compact section with projections undergoes a greater shrinkage than the brown compact section with recesses. | 10-03-2013 |
20140072468 | Method for Producing Hard Tip - The object of the invention is to provide a hard tip where the nose side has wear resistance and the bonding side has toughness. The chemical composition of sintered hard alloy constituting the hard tip is such that a compounding ratio of WC to Co is substantially the same from the nose side to the bonding side, and a first bonding metal or a second bonding metal has a gradient chemical composition wherein the content of the first bonding metal or the second bonding metal is increased from the nose side to the bonding side, the first bonding metal does not form the eutectic texture with WC, and the second bonding metal has the eutectic temperature with WC over the eutectic temperature of WC—Co sintered hard alloy and the melting point over the liquid phase sintering temperature of WC—Co sintered hard alloy. | 03-13-2014 |
20140086781 | METHOD FOR MANUFACTURING PIPE-SHAPED THERMAL POWER GENERATION DEVICE - A plurality of first cup-shaped members and a plurality of second cup-shaped members are placed alternately in repetition to form a pipe having an inner through-hole. At this point, neither the first cup-shaped members nor the second cup-shaped members are sintered yet. Then, the resultant pipe is sintered to obtain a pipe-shaped thermal power generation device. While the pipe is sintered, a pressure is applied to the pipe along a longitudinal direction of the pipe in a direction in which the pipe is compressed. | 03-27-2014 |
20140154126 | COMPOSITE SYSTEM - A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles. | 06-05-2014 |
20140170012 | Additive manufacturing using partially sintered layers - The invention relates to an additive manufacturing apparatus and method. According to the invention, an additive manufacturing apparatus includes a material supply system. The material supply system delivers layers of partially sintered pulverant material to an additive manufacturing device. | 06-19-2014 |
20140178240 | BEARING FORMING METHOD - A bearing forming method in which different properties of powder materials are compressed and molded in batches and then the materials are together sintered to form an integrated porous bearing. By means of the bearing forming method, the necessary material properties of a part of the bearing are enhanced. Moreover, the material cost and the manufacturing cost are greatly lowered. | 06-26-2014 |
20140212318 | METHOD OF PRODUCING A CIRCULAR SAW BLADE HAVING COOLING CHANNELS - A method is of producing a circular saw blade having cooling channels. In that case, placing of a plurality of thread-shaped bodies on a first circular disc of plastic material is carried out in such a manner that each of the thread-shaped bodies is oriented in radial direction. A second circular disc of plastic material is then placed on the first disc and the thread-shaped bodies. Subsequently, pressure is exerted on the second disc in the direction of the first disc. Removal of the plate-shaped bodies from the compressed disc pair is thereafter carried out, whereby cooling channels are created. Finally, sintering of the disc pair in order to obtain a circular saw blade having cooling channels running in radial direction is carried out. | 07-31-2014 |
20140294652 | Method of Making a Combustion Turbine Component from Metallic Combustion Turbine Subcomponent Greenbodies - A method of making a combustion turbine component includes assembling a plurality of metallic combustion turbine subcomponent greenbodies together to form a metallic greenbody assembly and sintering the metallic greenbody assembly to thereby form the combustion turbine component. Each of the plurality of metallic combustion turbine subcomponent greenbodies may be formed by direct metal fabrication (DMF). In addition, each of plurality of metallic combustion turbine subcomponent greenbodies may include an activatable binder and the activatable binder may be activated prior to sintering. | 10-02-2014 |
20140377118 | POWDER METAL ULTRASONIC WELDING TOOL AND METHOD OF MANUFACTURE THEREOF - An ultrasonic welding tool fabricated of powder metal material includes a body and a welding tip extending axially from the body to a working end. The powder metal material can be ferrous-based and admixed with additives, such as alumina, carbide, ferro-molybdenum, ferro-nickel, chrome or tribaloy. An exposed surface of the welding tip can comprise Fe | 12-25-2014 |
20150125334 | Materials and Process Using a Three Dimensional Printer to Fabricate Sintered Powder Metal Components - A process and materials are disclosed to enable the formation of metal powder-polymer/plastic preform articles by three dimensional printing a green state article, debinding the polymer/plastic from the metal powder, and sintering the article to a final shape. | 05-07-2015 |
20150306668 | METHOD FOR PRODUCING AN ASSEMBLY - The invention relates to a method for producing an assembly ( | 10-29-2015 |
20150377063 | SHROUD SEGMENT AND METHOD OF MANUFACTURING - A method of manufacturing a shroud segment, including separately molding at least first and second parts by powder injection molding. The first part has an inner surface and at least one fluid passage in communication with the inner surface. The second part has an outer surface complementary to the inner surface of the first part. At least one of the inner and outer surfaces is formed to define a plurality of grooves. A plurality of cooling passages in fluid communication with the at least one fluid passage are defined with the plurality of grooves by interconnecting the inner and outer surfaces while the first and second parts remain in a green state. The interconnected parts are debound and sintered to fuse the parts to define at least a portion of the shroud segment including the cooling passages. | 12-31-2015 |
20160059316 | MANUFACTURING METHOD OF MULTILAYER SHELL-CORE COMPOSITE STRUCTURAL COMPONENT - A manufacturing method of a multilayer shell-core composite structural component comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughening ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; (4) sintering the blank to obtain the multilayer shell-core composite structural component. The multilayer shell-core composite structural component has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance. | 03-03-2016 |
20160059317 | MANUFACTURING METHOD OF FEMORAL CONDYLE PROSTHESIS - A manufacturing method of a femoral condyle prosthesis having a multilayer shell-core composite structure comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughening ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; (4) sintering the blank to obtain the multilayer shell-core composite structural component. The femoral condyle prosthesis has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance. | 03-03-2016 |
20160059318 | MANUFACTURING METHOD OF MULTILAYER SHELL-CORE COMPOSITE STRUCTURAL COMPONENT - A manufacturing method of a multilayer shell-core composite structural component comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughening ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; (4) sintering the blank to obtain the multilayer shell-core composite structural component. The multilayer shell-core composite structural component has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance. | 03-03-2016 |
20160107239 | METHOD FOR MANUFACTURING NANOCOMPOSITE THERMOELECTRIC CONVERSION MATERIAL - This invention provides a method for manufacturing a nanocomposite thermoelectric conversion material in which phonon-scattering particles having a specific shape are dispersed, reducing thermal conductivity and increasing thermoelectric conversion performance. Said method for manufacturing a nanocomposite thermoelectric conversion material, in which oxide phonon-scattering particles are dispersed within the matrix of a thermoelectric conversion material, is characterized by including the following stages: a first stage in which, in a solution, the reduction of a salt is used to precipitate out/grow nanoparticles consisting of elements constituting a thermoelectric conversion material, the polymerization of a precursor is used to precipitate out/grow nanoparticles consisting of an oxide constituting phonon-scattering particles, and a mixture of said nanoparticles is collected; and a second stage in which a hydrothermal treatment is used to alloy said mixture into composite nanoparticles, which are then sintered. This method for manufacturing a nanocomposite thermoelectric conversion material is also characterized in that in the aforementioned first stage, nanoparticles consisting of a first group of elements that constitute the thermoelectric conversion material are precipitated out or grown before nanoparticles consisting of oxides of a second group of elements that constitute the phonon-scattering particles. | 04-21-2016 |
20160158843 | METHOD OF ACHIEVING FULL DENSITY BINDER JET PRINTED METALLIC ARTICLES - A method of producing full density binder-jet printed metallic articles. A metallic 3-D printed article is produced using a binder-jet printing method and is positioned in a hot isostatic press (HIP) container surrounded by stabilization powder. A vacuum is introduced into the inside of the HIP container. A binder used to bond powder articles together in the printed article is removed by heating the HIP container to decompose the binder and removing decomposition products by applying a vacuum to the HIP container. The HIP container is sealed with a vacuum therein and compacted under heat and pressure to remove all porosity in the printed article. The printed article thereafter is removed from the HIP container and finished to a final form. | 06-09-2016 |
20160184894 | METHOD FOR MANUFACTURE OF A HIP CONSOLIDATED COMPONENT AND A HIP:ED COMPONENT COMPRISING A WEAR RESISTANT LAYER - A method for manufacturing of a wear resistant component including the steps of providing a form defining at least a portion of the shape of the component; providing a powder mixture comprising 30-70 vol % of a powder of tungsten carbide and 70-30 vol % of a powder of a nickel based alloy, wherein the nickel based alloy consists of, in weight %: C: 0-1.0; Cr: 0- 14.0; Si: 2.5-4.5; B: 1.25-3.0; Fe: 1.0-4.5; the balance being Ni and unavoidable impurities, and wherein the powder of tungsten carbide has a particle size of 105-250 μm and the powder of the nickel based alloy has a maximum particle size of 32 μm; filling at least a portion of the form with the powder mixture; and subjecting the form to Hot Isostatic Pressing at a predetermined temperature, a predetermined isostatic pressure and a for a predetermined time so that the particles of the nickel-based alloy bond metallurgically to each other. | 06-30-2016 |
20160375493 | METHODS OF MAKING SINTERED ARTICLES - Methods of making sintered articles from powder metal carbide compositions by additive manufacturing techniques are described herein. Sintered carbide articles fabricated by such additive manufacturing techniques, in some embodiments, exhibit densities equaling articles formed according to conventional techniques employed in powder metallurgy. For example, a method of manufacturing an article comprises providing sintered cemented carbide powder comprising a hard particle phase including tungsten carbide and a metallic binder phase and forming the sintered cemented carbide powder into a green article by one or more additive manufacturing techniques. The green article is sintered to provide a sintered article having density greater than 90% theoretical full density, wherein the green article has a density less than 50% theoretical full density prior to sintering. | 12-29-2016 |
419007000 | One or more components not compacted | 26 |
20080286139 | Photo-Shaping Method, Photo-Shaping System, And Photo-Shaping Program - In photo-shaping a target object executed by a photo-shaping machine ( | 11-20-2008 |
20100028192 | METHOD FOR MANUFACTURING A PLATE-TYPE HEAT PIPE - A method for manufacturing a plate-type heat pipe includes filling a cavity of a mold with a core, and filling first and second metal powders into the injection systems of a double-mode injection molder with opposite injection directions. The first and second metal powders are injected into the cavity, and the first metal powder adheres to the core and the second metal powder adheres to the first metal powder. The resulting green piece is removed from the mold and the core removed therefrom by thermal or chemical reaction, resulting in a chamber in the green piece. The green piece is heated to obtain a sintered product with a tight outer wall constituting the sintered second metal powder and a wick structure constituting the sintered first powder. Finally a working fluid is injected into the chamber, and the sintered workpiece is evacuated by vacuum and sealed. | 02-04-2010 |
20110058975 | METHOD OF PROCESSING A BIMETALLIC PART - A method of processing a bimetallic part includes depositing an intermediary material having a metal powder onto a tooling surface of a cavity of a tool, transforming the intermediary material into a metal layer having a first composition on the tooling surface, and forming a metal core having a second, different composition in the cavity such that the metal layer bonds to the metal core to form a bimetallic part. | 03-10-2011 |
20110286874 | SINTERED 17-4PH STEEL PART AND METHOD FOR FORMING - A method of sintering a 17-4PH alloy powder and a sintered 17-4PH sintered part are disclosed. The part is formed by selective laser sintering a 17-4PH alloy powder and binder mixture to form a green part that is sintered to form a part having a substantially pure martensitic structure. The metal powder includes boron. The sintered part may be further processed by shot peening to improve crack resistance. | 11-24-2011 |
20120093674 | METHOD FOR MANUFACTURING THREE-DIMENSIONAL SHAPED OBJECT AND THREE-DIMENSIONAL SHAPED OBJECT OBTAINED BY THE SAME - There is provided a method for manufacturing a three-dimensional shaped object. The method of the present invention comprises the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam; wherein only the surface portion of the solidified layer, to which a force is applied when the three-dimensional shaped object is used, is subjected to a machining process. | 04-19-2012 |
20120100031 | METHOD AND APPARATUS FOR PRODUCING THREE-DIMENSIONAL OBJECTS - The invention concerns a method for producing three-dimensional objects ( | 04-26-2012 |
20130058824 | METHOD FOR PRODUCING DECORATIVE SINTERED METALLIC ARTICLE AND DECORATIVE SINTERED METALLIC ARTICLE - Provided is a method for producing a decorative sintered metallic article and the same, used in jewelry goods, ornaments, clothing accessories, by combining a copper paste and a silver paste. The method comprises the steps of: producing a patterned piece by alternately arranging the copper paste containing an organic binder and water in 10 to 35 wt % and one or more kinds of copper powders selected from a copper powder and a copper alloy powder, and the silver paste similarly prepared to the copper paste; forming patterned pastes by drawing a pattern through deforming at least rows on the upper surface of the alternately arranged copper and silver pastes; drying the patterned pastes to produce a patterned piece; shaping a decorative object by processing the produced patterned piece; and firing the decorative object to produce a decorative sintered object. | 03-07-2013 |
20130309121 | LAYER-BY-LAYER CONSTRUCTION WITH BULK METALLIC GLASSES - Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part. | 11-21-2013 |
20140271318 | METHODS OF MAKING METAL MATRIX COMPOSITE AND ALLOY ARTICLES - In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate. | 09-18-2014 |
20150044084 | METHODS FOR FABRICATING GRADIENT ALLOY ARTICLES WITH MULTI-FUNCTIONAL PROPERTIES - Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications. | 02-12-2015 |
20150298213 | Manufacturing of Components from Parts Made from Different Materials, Particularly of Space Transportation Components Such as Combustion Chambers for Thrusters - A method for manufacturing components from parts made from different materials involves producing a transition between one part made from a first material and another part made from a second material by an additive layer manufacturing method. The additive layer manufacturing method involves starting with the first material and then gradually changing the material composition to the second material. | 10-22-2015 |
20160052058 | METHOD FOR PRODUCING A THREE-DIMENSIONAL COMPONENT - The invention relates to a method for manufacturing a three-dimensional component. It is proposed to manufacture, during the build operation in the build space of the layer manufacturing system, not only the component but also at least one characterizing element associated with the component. The characterizing element allows simple, fast, and reliable sorting of the three-dimensional components. | 02-25-2016 |
20160052087 | METHOD OF ELIMINATING SUB-SURFACE POROSITY - A method for operating an additive manufacturing apparatus, the method comprises directing a first energy beam along a surface contour vector in a build plane. A second energy beam is directed along a plurality of substantially parallel hatch vectors disposed in the build plane inward of the surface contour vector. A sum of the surface contour vector and the plurality of hatch vectors define a processed powder region in the build plane. A third energy beam is directed along an offset contour vector in the build plane. The offset contour vector includes a plurality of unprocessed powder regions in the build plane between the surface contour vector and the plurality of hatch vectors. | 02-25-2016 |
20160067779 | LOCAL CONTAMINATION DETECTION IN ADDITIVE MANUFACTURING - An additive manufacturing system comprises a build chamber, a powder bed additive manufacturing device disposed in the build chamber, and a powder contamination detection system. The powder contamination detection system is in communication with an atmosphere in the build chamber. | 03-10-2016 |
20160067820 | SELECTIVE LASER MELTING SYSTEM - An additive manufacturing apparatus comprises a laser beam generator, a build surface spaced apart from the laser beam generator, and first and second adjacent optical elements disposed along a beam travel path between the laser beam generator and the build surface. The first optical element is continuously rotatable about a beam steering axis and the second optical element is continuously rotatable about the beam steering axis independently of the first optical element. | 03-10-2016 |
20160074938 | PRODUCTION METHOD FOR THREE-DIMENSIONAL SHAPED ARTICLE - One embodiment of the present invention is a production method for a three-dimensional shaped article, the method comprising the following: a mixing step for obtaining a dissimilar metal mixed powder by mixing a first metal powder (P | 03-17-2016 |
20160114427 | DEVICE AND METHOD FOR GENERATIVE COMPONENT PRODUCTION - The present invention relates to a device for laser-based generative component production. The device comprises a processing head ( | 04-28-2016 |
20160129503 | System And Method For High Power Diode Based Additive Manufacturing - A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array. | 05-12-2016 |
20160144428 | BUILD PLATE AND APPARATUS FOR ADDITIVE MANUFACTURING - A powder bed deposition apparatus comprises a movable build plate, a powder delivery system, an energy beam apparatus capable of selectively steering at least one focused energy beam over successive quantities of metal powder, a non-metallic barrier layer, and an anchor removably secured to the build plate. The non-metallic barrier layer is disposed over a metal upper surface of the build plate. The anchor has a metal bonding surface flush with the non-metallic barrier layer, the non-metallic barrier layer and the anchor defining a removable build assembly with a powder bed working surface. | 05-26-2016 |
20160151861 | METHOD AND SYSTEM FOR MAKING GOLF CLUB COMPONENTS | 06-02-2016 |
20160158840 | USE OF SPARK PLASMA SINTERING FOR MANUFACTURING SUPERALLOY COMPOUND COMPONENTS - A method of manufacturing a superalloy compound component is provided. The component includes a first component portion primarily consisting of a first superalloy and a second component portion primarily consisting of a second superalloy or of a refractory metal. The method includes using Spark Plasma Sintering for forming the superalloy compound component. | 06-09-2016 |
20160167160 | METHOD FOR ADDITIVE MANUFACTURING | 06-16-2016 |
20160199914 | OBJECT PRODUCTION | 07-14-2016 |
20160251736 | SELECTIVE LASER SINTERING METHOD, HEAT TREATMENT METHOD, METAL POWDER, AND SHAPED PRODUCT | 09-01-2016 |
20170232511 | METHODS AND LEADING EDGE SUPPORTS FOR ADDITIVE MANUFACTURING | 08-17-2017 |
20170232518 | SYNCHRONOUS POWDER-FEEDING SPACE LASER MACHINING AND THREE-DIMENSIONAL FORMING METHOD AND DEVICE | 08-17-2017 |