Class / Patent application number | Description | Number of patent applications / Date published |
419002000 | Making porous product | 50 |
20080226486 | Manufacturing of Controlled Porosity Metallic Tools - A process for making a metal tool having controlled porosity is disclosed. The process includes the step of preparing metal powder by gas atomization. The metal powder is filled into a metal container. The powder-filled container is placed in a metal vessel and surrounded with glass frit. The metal vessel is then heated to a temperature sufficient to melt the glass frit. The metal vessel is then compacted under sufficient pressure to partially consolidate the metal powder so as to retain porosity therein in an amount sufficient to permit air to vent through the metal tool. | 09-18-2008 |
20080226487 | Nickel powder, method for manufacturing same, conductor paste, and multilayer ceramic electronic component using same - A nickel powder with an average particle size of 0.05 to 1.0 μm, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature. | 09-18-2008 |
20090028740 | METHOD FOR THE PRODUCTION OF SEMICONDUCTOR GRANULES - A method of manufacturing a semiconductor material in the form of bricks or granules, includes a step of sintering powders of at least one material selected from the group consisting of silicon, germanium, gallium arsenide, and the alloys thereof so as to form said granules. The sintering step includes the steps of compacting and thermal processing the powders, and a step of purifying the semiconductor material using a flow of a gas. The gas flow passes through the porosity channels of the material. | 01-29-2009 |
20090068051 | METHODS OF FORMING NANO-STRUCTURED MATERIALS INCLUDING COMPOUNDS CAPABLE OF STORING AND RELEASING HYDROGEN - Methods of forming materials that contain hydrogen storage materials and nano-structured matrices are described. In one embodiment, the hydrogen storage material is a complex hydride. In another embodiment, the method includes melting at least one compound capable of storing and releasing hydrogen, obtaining an aluminum-containing nano-structured matrix having a melting point higher than the temperature of the at least one compound, and contacting the molten at least one compound with the nano-structured matrix to facilitate the coating of the nano-structured material with the molten at least one compound. The matrix may undergo mechanical working to further modify the nano-structure. In yet another embodiment, the method includes forming a powder including a gas-atomized aluminum-containing powder, and pressing or sintering the powder to form a matrix, such that the matrix has nano-meter scale pores. | 03-12-2009 |
20090155116 | HYDRODYNAMIC BEARING DEVICE - A hydrodynamic bearing device is provided for use with a spindle motor. The hydrodynamic bearing device has a sleeve made of a sintered metal that is obtained by sintering a sintering material that is iron, an iron alloy, copper, a copper alloy or a mixture thereof. This sintered metal has independent pores, which do not communicate with each other, by selecting conditions for forming a desired sintered body within a predetermined range. The conditions includes a grain size of powdered metal of a material for the sintered metal, a molding pressure when the molded body is formed, sintering temperature and sintering period in the sintering step. | 06-18-2009 |
20090162235 | MEDICAL DEVICE AND SURFACE MODIFICATION METHOD FOR MEDICAL DEVICE - The invention provides a medical device in which a metallic porous body is joined to at least a part of a surface of the main body of a medical device, and a surface modification method for the medical device. The metallic porous body is formed in multilayers. | 06-25-2009 |
20090196782 | POROUS LIQUID ABSORBING-AND-HOLDING MEMBER, PROCESS FOR PRODUCTION THEREOF, AND ALCOHOL ABSORBING-AND-HOLDING MEMBER - An object of the present invention is to provide a porous liquid absorbing-and-holding member having a high absorbing capacity for a liquid owing to capillarity and having in itself a structure capable of holding a large amount of the liquid, a process for producing this member, and a member for absorbing and holding an alcohol used as a fuel for a fuel cell. The porous liquid absorbing-and-holding member provided by the present invention is that including a porous sintered product having a skeleton formed by sintering of metal powder around voids and subjected to hydrophilicity-imparting treatment. The hydrophilicity-imparting treatment is preferably the formation of one or more substances selected from the group consisting of silicon oxides, titanium oxides, chromium oxides and aluminum oxide on the skeleton. | 08-06-2009 |
20090202379 | METHOD FOR PRODUCING AN INLET LINING - The invention relates to a method for producing an inlet lining on a stator-sided component of a turbine engine, in particular, a gas turbine, with at least the following steps: a) providing a stator-sided component of a turbine engine, this component being provided with an inlet lining; b) providing a mixture consisting of a solvent; particles of a metallic parent material for the inlet lining, said particles being insoluble in the solvent; and a filler, this filler having at least one constituent that is soluble in the solvent; c) applying the mixture to the stator-sided component; d) drying the stator-sided component and the mixture, applied to the component, while at least partially expelling the solvent in order to provide a porous green body in the area of the applied and dried mixture; e) diffusion heat treating the component for inwardly diffusing aluminum and/or chromium and for forming the intermetallic phases in the resulting inlet lining. | 08-13-2009 |
20090232692 | PROCESS FOR PRODUCING POROUS METAL BODY - Disclosed is a process of producing a porous metal body containing a metal component which is likely to be oxidized, by which process the amounts of residual carbon and residual oxygen therein are decreased, and by which the performance of the product porous body can be largely promoted. The process for producing a porous metal body by sintering a material of the porous metal body, which material is obtained by coating a slurry containing a metal powder and an organic binder on an organic porous aggregate, comprises a defatting step of treating the material of the porous metal body at a temperature not higher than | 09-17-2009 |
20090252635 | Process For Producing Sintered Porous Materials - The invention provides a process of making porous structures or materials, including the colloidal processing (e.g. slip casting, pressure casting, tape casting or electrophoretic deposition) of solid particle emulsions to form a green body that can be directly sintered without a de-binding step. | 10-08-2009 |
20090280022 | TITANIUM, TITANIUM ALLOY AND NiTi FOAMS WITH HIGH DUCTILITY - A method for manufacturing a high ductility Ti-, Ti-alloy or NiTi-foam, meaning a compression strain higher than 10%, includes: preparing a powder suspension of a Ti-, NiTi- or Ti-alloy powder, bringing the said powder suspension into a desired form by gelcasting to form a green artefact. The method also includes a calcination step wherein the green artefact is calcined, and sintering the artifact. The calcination step includes a slow heating step wherein said green artefact is heated at a rate lower or equal to 20° C./hour to a temperature between 400° C. and 600° C. and the Ti-, NiTi- or Ti-alloy powder has a particle size less than 100 μm. A high ductility Ti-, Ti-alloy or NiTi foam, with a compression higher than 10%, with a theoretical density less than 30%, pore size (cell size) between 50 to 1000 μm can be obtained with such a method. | 11-12-2009 |
20090317278 | COMPOSITE ARTIFICIAL BONE - An artificial bone which is easy to bond to a living bone and has a mechanical property approximate to that of a living bone is disclosed. The artificial bone comprises: a dense part made of titanium or a titanium alloy, in the shape of a frame that is approximate to a part of an outer face of a living bone, having a density of 95% or more; and a porous part made of sintered particles of titanium or a titanium alloy having the same or different composition as the titanium alloy for the dense part, in the shape approximate to the remaining part of the living bone, having a porosity of 40% or more, the dense part and the particles of the porous part being sintered to each other at an interface between the dense part and the porous part. | 12-24-2009 |
20100003155 | METHOD AND APPARATUS FOR FORMING POROUS METAL IMPLANTS - A method for providing a porous metal implant. A mixture of a biocompatible metal, a spacing agent, and a binder is provided. The mixture is formed into a shaped the spacing agent is removed to form a plurality of pores in the implant. A shaped porous metal implant is also provided. | 01-07-2010 |
20100074787 | PROCESS FOR PRODUCING SINTERED POROUS MATERIALS - The invention provides a process of making porous structures or materials, including the colloidal processing (e.g. slip casting, pressure casting, tape casting or electrophoretic deposition) of solid particle emulsions to form a green body that can be directly sintered without a de-binding step. | 03-25-2010 |
20100074788 | Fully-dense discontinuosly-reinforced titanium matrix composites and method for manufacturing the same - The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, etc. The method for manufacturing TMCC is comprised of the following steps: (a) preparing a basic powdered blend containing matrix alloy or titanium powders, dispersing ceramic and/or intermetallic powders, and powders of said complex carbide- and/or silicide particles, (b) preparing the Al—V master alloy containing ≦5 wt. % of iron, (c) preparing the Al—V—Fe master alloy fine powder having a particle size of ≦20 μm, (d) mixing the basic powdered blend with the master alloy powder to obtain a chemical composition of TMCC, (e) compacting the powder mixture at room temperature, (f) sintering at the temperature which provides at least partial dissolution of dispersed powders, (g) forging at 1500-2300° F., and (h) cooling. The resulting TMCC has density over 98% and closed discontinuous porosity after sintering that allows making hot deformation in air without encapsulating. | 03-25-2010 |
20100150767 | Method of making metallic foams and foams produced - A method of making a metallic foam by a sintering process that includes solid state sintering and transient liquid phase sintering to form and then densify the metallic foam structure. A metallic foam is provided having a sintered foam skeleton structure with desirable macro-pores throughout wherein the undesirable micropores in walls of the skeleton structure are filled by a eutectic phase without closing off the desirable macro-pores. | 06-17-2010 |
20100158741 | COMPOSITE METAL FOAM AND METHODS OF PREPARATION THEREOF - The present invention is directed to composite metal foams comprising hollow metallic spheres and a solid metal matrix. The composite metal foams show high strength, particularly in comparison to previous metal foams, while maintaining a favorable strength to density ratio. The composite metal foams can be prepared by various techniques, such as powder metallurgy and casting. | 06-24-2010 |
20100221136 | Porous Metallic Structures - In one aspect, there are provided methods for producing porous metallic structures, wherein the methods involve the use of collagen fibrils on the nanometer scale as a “sacrificial” scaffold upon which metal particles are deposited. Also disclosed are structures comprising a porous metallic matrix having favorable strength, porosity, and density characteristics. Structures produced in accordance with the present disclosure are useful for, inter alia, the fabrication of devices such as filters, heat exchangers, sound absorbers, electrochemical cathodes, fuel cells, catalyst supports, fluid treatment units, lightweight structures and biomaterials. | 09-02-2010 |
20100303663 | POROUS LIGHT WEIGHT IRON AND METHOD FOR PREPARING THE SAME - The present invention relates to a porous lightweight iron and a method for preparing the same, and more particularly to a porous lightweight iron having decreased weight due to pores formed therein while having a strength similar to that of existing steel products; and a method for preparing a porous lightweight iron having desired properties or various properties according to intended use. As described above in detail, according to the present invention, the thickness, weight and strength of lightweight iron to be produced, can be controlled, thus making it possible to prepare porous lightweight iron having desired properties by controlling the sintering temperature during the preparation process, the mixing ratio of diamond or silicon carbide and the mixing ratio of raw materials. Also, since the porous lightweight iron prepared according to the present invention has a weight per unit volume of 10 to 65% (W/V), compared to the existing iron steel products, it is possible to increase economic efficiency and improve processing convenience, when applied to an actual industry. | 12-02-2010 |
20110014081 | LASER-PRODUCED POROUS STRUCTURE - The present invention disclosed a method of producing a three-dimensional porous tissue in-growth structure. The method includes the steps of depositing a first layer of metal powder and scanning the first layer of metal powder with a laser beam to form a portion of a plurality of predetermined unit cells. Depositing at least one additional layer of metal powder onto a previous layer and repeating the step of scanning a laser beam for at least one of the additional layers in order to continuing forming the predetermined unit cells. The method further includes continuing the depositing and scanning steps to form a medical implant. | 01-20-2011 |
20110123382 | METHOD AND APPARATUS FOR FORMING POROUS METAL IMPLANTS - A method for providing a porous metal implant. A mixture of a biocompatible metal, a spacing agent, and a binder is provided. The mixture is formed into a shaped the spacing agent is removed to form a plurality of pores in the implant. A shaped porous metal implant is also provided. | 05-26-2011 |
20110200478 | Inorganic structures with controlled open cell porosity and articles made therefrom - Structural inorganic cellular materials with controlled open porosity are produced by foaming fine particulate-laden aqueous solutions into stable, uniform, dodecahedral froth structures which are dried and sintered by microwave energy or high voltage instant electrical discharge. Porous open cell biomedical implants such as niobium or tantalum acetabular caps with engineered osteoconductive porosity are among the products achievable. | 08-18-2011 |
20110293461 | High-strength discontinuosly-reinforced titanium matrix composites and method for manufacturing the same - The method for manufacturing high-strength discontinuously-reinforced titanium matrix composite comprises the following steps: (a) preparing a basic powdered blend containing the matrix alloy or titanium powders having a particle size <250 μm for 95% of the powder and powders, which reinforcing matrix during high-temperature operations, such as blended elemental reinforcing powders, ceramic powders, intermetallic powders, and/or powders of complex carbide- and/or boride particles that are at least partially soluble in the matrix, (b) preparing reinforcing powders by co-attrition, mechanical alloying, or pre-sintering of blended elemental powders with each other and graphite, (c) mixing the basic powdered blend with the Al-V master alloy powder, and co-attrited, mechanically-alloyed powders, and pre-sintered powders in the predetermined ratio to obtain a chemical composition of titanium matrix composite material, (d) compacting the powder mixture at room temperature by any of room temperature consolidation process, (e) sintering at the temperature providing at least partial dissolution of dispersing ceramic and/or intermetallic powders, (f) high-temperature deformation at the temperature range of 1500-2300° F. resulting in additional in-situ formation of re-enforced particulates, and (g) cooling. | 12-01-2011 |
20120082583 | PRODUCTION METHOD FOR SINTERED MEMBER - A production method for a sintered member includes preparing a raw powder, compacting the raw powder into a green compact having pores at the surface thereof, and sintering the green compact into a sintered compact. The production method also includes sealing the pores exposed at the surface of the sintered compact by at least one of plastically deforming and melting the surface of the sintered compact. The production method further includes forging the sintered compact by using a lubricant after the sealing. | 04-05-2012 |
20120087823 | METHOD FOR PRODUCING POROUS METAL SINTERED MOLDED BODIES - The invention relates to a method for producing porous metal sintered molded bodies, wherein expandable polymer particles, in which a sinterable metal powder is dispersed, are expanded to form a molded body. The molded body is subjected to a heat treatment, wherein the polymer is expelled and the sinterable metal powder is sintered to form a porous metal sintered molded body. Preferably, styrol polymers are used. The sinterable metal powder is selected, for example, from aluminum, iron, copper, nickel, and titanium. | 04-12-2012 |
20120107166 | PROCESS FOR PRODUCING POROUS SINTERED ALUMINUM, AND POROUS SINTERED ALUMINUM - This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm−10 (° C.)≦T≦685 (° C.). | 05-03-2012 |
20120183428 | METHOD FOR THE PREPARATION OF FERROUS LOW CARBON POROUS MATERIAL - A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue. | 07-19-2012 |
20120183429 | Devices and Methods for Tissue Engineering - A tissue scaffold fabricated from bioinert fiber forms a rigid three-dimensional porous matrix having a bioinert composition. Porosity in the form of interconnected pore space is provided by the space between the bioinert fiber in the porous matrix. Strength of the porous matrix is provided by bioinert fiber fused and bonded into the rigid three-dimensional matrix having a specific pore size and pore size distribution. The tissue scaffold supports tissue in-growth to provide osteoconductivity as a tissue scaffold, used for the repair of damaged and/or diseased bone tissue. | 07-19-2012 |
20130017115 | METHOD OF PRODUCING POROUS VALVE METAL THIN FILM AND THIN FILM PRODUCED THEREBY - Provided are a porous valve metal thin film having a great surface area, a method for the production thereof, and a thin film capacitor having a great capacity density utilizing the thin film as an anode. The porous valve metal thin film is produced by preparing a thin film in which a valve metal and a hetero-phase component have a particle diameter within a range of from 1 nm to 1 μm and the valve metal and the hetero-phase component are uniformly distributed, subjecting the thin film to a heat treatment so as to adjust the particle diameter and to appropriately sinter the film, and removing the hetero-phase portion. | 01-17-2013 |
20130171019 | METHOD OF MANUFACTURING A THREE-DIMENSIONAL OBJECT HAVING AN INTERNAL STRUCTURE - Method of manufacturing a three-dimensional object of a building material by an additive layer-wise building method, wherein based on material parameters of the building material and predetermined characteristics of the object to be manufactured, an internal structure of the object having a grid structure calculated, and the three-dimensional object is manufactured with this internal structure by the additive layer-wise building method, so that it comprises the predetermined characteristics. | 07-04-2013 |
20130177467 | METHOD OF BONDING POROUS METAL TO METAL SUBSTRATES - A method for preparing an implant having a porous metal component. A loose powder mixture including a biocompatible metal powder and a spacing agent is prepared and compressed onto a metal base. After being compressed, the spacing agent is removed, thereby forming a compact including a porous metal structure pressed on the metal base. The compact is sintered, forming a subassembly, which is aligned with a metal substrate portion of an implant. A metallurgical bonding process, such as diffusion bonding, is performed at the interface of the subassembly and the metal substrate to form an implant having a porous metal component. | 07-11-2013 |
20130294958 | Process and Method For Producing Foamable Metals - A process for producing foamable metal articles and foamed metal articles and materials. A mixture of foamable material is produced by blending at least one metal powder and one gas-producing blowing agent, then compacting the mixture into a solid form of various cross-sections and configurations. The gas-producing blowing agent comprises silicon powder and talc powder. | 11-07-2013 |
20140127068 | PRODUCTION OF METAL OR ALLOY OBJECTS - Disclosed is a method of producing an object, the object being made of metal or an alloy, having a desired shape and being non-porous, the method comprising: providing some metal or alloy having a first average solute level; using the provided metal or alloy, performing a net-shape or near-net shape manufacturing process to produce an intermediate object, the intermediate object having the desired shape, being non-porous, and having a second average solute level, the second average solute level being greater than or equal to the first average solute level; and performing a solute level changing process on the intermediate object to change the solute level of at least the bulk of the intermediate object such as to provide the intermediate object with a third average solute level, thereby providing the object, the third average solute level being different to the second. | 05-08-2014 |
20140134036 | SINTERED FIBER FILTER - Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described. | 05-15-2014 |
20140301884 | METHOD AND APPARATUS FOR MANUFACTURING POROUS THREE-DIMENSIONAL ARTICLES - Disclosed is a method for manufacturing three-dimensional articles with porosity. A model is created of a porous structure, said creating step comprising the steps of: defining a three-dimensional space comprising a predetermined pattern of nodes, wherein said nodes are connected together in a predetermined manner with struts, moving each node in said three-dimensional space a randomized distance, which distance is less than a predetermined value and in a randomized direction, slicing said three-dimensional space into a predetermined number of two-dimensional layers with a predetermined thickness, slicing said three-dimensional article into two-dimensional layers with a predetermined thickness, applying one two-dimensional layer of said article on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article, repeating said applying step for all two dimensional layers of said article, manufacturing the three-dimensional article with porosity according to the model by exposing fusible material to an energy source. | 10-09-2014 |
20140334961 | METHOD OF MANUFACTURING A HYDROGEN STORAGE DEVICE - A method of manufacturing a hydrogen storage device includes the steps: (1) mix metal powder, backbone binder and wetting agent to make a canister shell feedstock; (2) mix metal powder, salts, backbone binder and wetting agent to make a porous structure feedstock; (3) feed the canister shell feedstock in an injection molding machine to form a green part of canister shell; (4) feed the porous structure feedstock in the green part of canister shell to form a. green part of porous structure integral with the green part of canister shell by injection molding; (5) dissolve the salts out of the green part of porous structure to form pores; (6) remove the wetting agent from the green parts of canister shell and porous structure; (7) remove the backbone binder from the green parts of canister shell and porous structure to form the hydrogen storage device. | 11-13-2014 |
20140348688 | METHOD FOR FABRICATING BIOCOMPATIBLE POROUS TITANIUM - A method for fabricating porous metal constructs (such as porous Ti constructs) which may be used as implants in bone repair is disclosed. The method employs a new saltbath sintering process coupled with conventional powder metallurgy technology which is capable of fabricating porous metal constructs with controlled porosity and pore size having a lower production cost than conventional powder metallurgy methods. | 11-27-2014 |
20150010422 | Methods of Manufacturing a Drug-Eluting Stent - Methods for manufacturing an endovascular stent having channel(s) formed therein for containing a therapeutic material. A molding and sintering process forms a thin-walled tubular component having a tubular core structure encapsulated therein. Portions of the thin-walled tubular component are removed to form at least a portion of the endovascular stent in a pattern corresponding to that of the tubular core structure such that the tubular core structure or corresponding channel(s) left thereby are captured within a wall of the formed stent. The tubular core structure is removed to leave a corresponding channel(s) in its stead. A plurality of holes is formed in the stent wall for filling the stent channel(s) with the therapeutic material and for eluting the therapeutic material therefrom. | 01-08-2015 |
20150023827 | Porous Amorphous Alloy Artificial Joint and Manufacturing Method Thereof - The present invention relates to a porous amorphous alloy artificial joint and a manufacturing method thereof The porous amorphous alloy artificial joint is formed of at least one of amorphous alloy compounds represented by Formula 1 to Formula 4 as described in the present specification. | 01-22-2015 |
20150023828 | PROCESS FOR MANUFACTURING A POROUS BODY BY POWDER METALLURGY AND METALLURGIC COMPOSITION OF PARTICULATE MATERIALS - The process comprises the steps of: mixing a load of oxide ceramic material particles ( | 01-22-2015 |
20150030493 | POROUS STRUCTURES AND METHODS OF MAKING SAME - The present disclosure provides methods to improve the properties of a porous structure formed by a rapid manufacturing technique. Embodiments of the present disclosure increase the bonding between the micro-particles | 01-29-2015 |
20150078949 | PROCESS FOR PRODUCING POROUS SINTERED ALUMINUM, AND POROUS SINTERED ALUMINUM - This method for producing porous sintered aluminum Includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm−10 (° C.)≦T≦685 (° C.), | 03-19-2015 |
20150328685 | Method of Making Porous Metal Articles - In one embodiment, the present invention may be a method of making a porous biocompatible metal article by combining a metal powder with a homogenizing aid to form metal granules, including blending the metal granules and an extractable particulate to form a composite, forming the composite into a green article, removing the extractable particulate from the green article to form a metal matrix and pore structure, and sintering the metal matrix and pore structure. Furthermore the present invention may include a second homogenizing aid combined with the extractable particulate. The present invention also includes shaping the metal matrix and pore structure with or without the use of a binder. | 11-19-2015 |
20160008884 | ALUMINUM MATERIAL FOR SINTERING, METHOD FOR PRODUCING ALUMINUM MATERIAL FOR SINTERING, AND METHOD FOR PRODUCING POROUS ALUMINUM SINTERED COMPACT | 01-14-2016 |
20160023273 | METHOD FOR CREATING POROUS STRUCTURES BY PARTICLE EXPANSION - A process for producing a metal foam. The process includes mechanically working a metallic powder such that oxide particles are finely dispersed within a metallic matrix of the metallic particles that make up the metallic powder. The mechanically worked metallic powder is then annealed in a reducing atmosphere, which in turn reduces the oxide particles within the metallic particles such that H | 01-28-2016 |
20160045957 | PREPARATION OF FORMED ORTHOPEDIC ARTICLES - In one embodiment, the present invention may be a method of forming a porous and/or dense article from metal powder, including adding to a mold a first feedstock comprising an agglomerated metal powder and an agglomeration agent; forming said first feedstock into a green state dense article; and removing said agglomeration agent. Furthermore, the present invention may include a second feedstock including an agglomerated metal powder, a space filling material and an agglomeration agent which may be formed into a green state porous article. The present invention also includes a dense and/or porous article manufactured by various methods, as well as methods for creating the dense and porous feedstocks. Moreover, the present invention may include an article which may be a medical implant. | 02-18-2016 |
20160074939 | POROUS SINTERED BODY AND METHOD OF MAKING THE SAME | 03-17-2016 |
20160136728 | Process of Dough Forming of Polymer-Metal Blend Suitable for Shape Forming - Processing of polymer-metal blend composition involving viscosity control under ambient conditions suitable for shape forming and homogeneous green body preparation. The advancement involves effective controlling of the rate of settling of the metal particles in polymer-metal blend under ambient conditions to generate a cost effective and simple process for producing shape formable dough. Advantageously, the present invention provides a rapid, energy saving process involving minimum material loss and utilizing non hazardous solvent system such as water. | 05-19-2016 |
20160167135 | POROUS METAL SUBSTRATE STRUCTURE FOR A SOLID OXIDE FUEL CELL | 06-16-2016 |
20160175933 | FABRICATION OF ARTICLES FROM NANOWIRES | 06-23-2016 |