Class / Patent application number | Description | Number of patent applications / Date published |
418228000 | AXIALLY MOVING VANE OR ABUTMENT | 13 |
20150345498 | VACUUM PUMP FOR A MOTOR VEHICLE - The invention relates to a vacuum pump for a motor vehicle, comprising a pump housing surface, on which a noise reduction hood delimiting a sound damping volume is mounted. The invention is characterized in that a multi-functional decoupling element is located between the pump housing surface and the noise reduction hood, said element carrying out a sealing function and a valve function in addition to a sound decoupling function. | 12-03-2015 |
418229000 | Sliding | 12 |
20080247897 | Hydrogen G-Cycle Rotary Internal Combustion Engine - A hydrogen G-cycle rotary vane internal combustion engine has a sodium vapor chamber transferring excess combustion heat into combustion chambers. An active water cooling system captures heat from the engine housing stator, rotor, and sliding vanes and transfers it back into the combustion cycle by premixing it with hydrogen to reduce peak combustion temperature and with an early an late stage combustion chamber injection to help transfer heat from the sodium vapor chamber, to control chamber temperature, and to increase chamber vapor pressure. A combustion chamber sealing system includes axial seals between the rotor and the stator, vane face seals, and toggling split vane seals between the outer perimeters of the sliding vanes and the stator. Sliding vanes reciprocate laterally in and out of the rotor assisted by a vane belting system. A thermal barrier coating minimizes heat transfer and thermal deformation. Solid lubricants provide high temperature lubrication and durability. | 10-09-2008 |
20110135529 | ROTARY COMPRESSOR - Disclosed is a rotary compressor in which a connecting protrusion is formed at an inner circumferential surface of a vane chamber in which a connection tube is inserted, so as to increase a sealing area between the connection hole and the connection tube, and the size of the connection hole is definitely designated so as to prevent the deformation of the cylinder when press-fitting the connection tube into the connection hole, whereby an amount of leaked refrigerant from the vane chamber can remarkably be reduced and accordingly a fast and accurate mode switching of the vane can be achieved, thereby improving the performance of the compressor and preventing noise caused by vibration of the vane in advance. | 06-09-2011 |
20110300015 | VANE PUMP - A vane pump is disclosed. The vane pump includes at least an inner rotor and at least one vane. The inner rotor is rotatably mounted in a cage and the at least one vane is configured in at least one substantially radial slot, the slot is configured in the inner rotor, wherein the slots and the vanes are arranged asymmetrically on the inner rotor. | 12-08-2011 |
20150377236 | VANE PUMP - The vane pump includes a rotor, a plurality of slits, vanes that are respectively received in the slits, a cam ring that has an inner circumferential cam face with which tip portions of the vanes are brought into sliding contact, pump chambers that are defined by the rotor, the cam ring, and the adjacent vanes, a side member that has a sliding contact surface with which the side surface of the rotor is brought into sliding contact, a discharge port that is formed so as to open to the side member, the discharge port being configured to guide working fluid discharged from the pump chamber, and a notch that are provided on the side member so as to extend from the opening of the discharge port in direction opposite to rotating direction of the rotor. The notch is formed radially outside of the protruded portion of the rotor. | 12-31-2015 |
20160003241 | VANE PUMP - A vane pump includes: a rotor; vanes; a cam ring; pump chambers; a suction port; a discharge port; back-pressure chambers; a discharge-side back pressure port configured to guide working fluid that is discharged from the discharge port to the back-pressure chambers; and suction-side back pressure ports configured to guide the working fluid to the back-pressure chambers. The suction-side back pressure ports are formed to be divided into a low-pressure port and a high-pressure port, the low-pressure port being configured to guide the working fluid in the suction port to the back-pressure chambers, and the high-pressure port being configured to guide the working fluid that is discharged from the discharge port to the back-pressure chambers. The high-pressure port is arranged at the forward-side of the low-pressure port in rotating direction of the rotor. | 01-07-2016 |
20160131135 | ROTARY COMPRESSOR - A rotary compressor includes: a vertically-positioned airtight compressor housing having an upper section including a discharge portion of a refrigerant, and a lower section including an inlet unit of the refrigerant and storing lubricant oil; a compressing unit, disposed in the lower section, compressing the refrigerant sucked in via the inlet unit and discharging the refrigerant from the discharge portion; a motor, disposed in the upper section, driving the compressing unit via a rotation shaft; and an accumulator attached to the compressor housing and connected to the inlet unit. Inside the accumulator and/or the compressor housing, silicon dioxide having a crystal structure containing a vacancy with a diameter equal to or less than a diameter of a water molecule or a composite including silicon dioxide having a crystal structure containing a vacancy with a diameter equal to or less than that of the water molecule is placed. | 05-12-2016 |
20160138398 | HYDRAULIC VANE-TYPE MACHINE - The invention specifies a hydraulic vane-type machine ( | 05-19-2016 |
20160153452 | MOTOR-DRIVEN COMPRESSOR | 06-02-2016 |
20160201675 | VACUUM PUMP | 07-14-2016 |
20160201677 | REFRIGERANT FILLING ROTARY COMPRESSOR | 07-14-2016 |
418230000 | Positively biased | 2 |
20110311387 | HIGH EFFICIENCY FIXED DISPLACEMENT VANE PUMP - A vane pump for an automatic transmission includes a housing which may be spaced from the axis of the transmission input shaft axis and driven by a chain or gear train driven by the torque converter hub or disposed on and about the axis of the transmission input shaft and driven at engine speed. The vane pump includes a pair of port plates which reside on the end faces of a pump body having a cylindrical chamber which receives an eccentrically disposed rotor that is coupled to a stub shaft in an off-axis arrangement. The rotor includes a plurality of radial slots which receive a like plurality of vanes. The outer ends or edges of the vanes are in contact with the wall of the cylindrical chamber and the inner ends or edges are in contact with a pair of vane rings received within recesses in the ends of the rotor. The vanes are thus constrained between the wall of the chamber and the vane rings which positively determine their radial positions as they and the rotor rotate. Suitable inlet (suction) and outlet (pressure) ports in the port plates supply and collect hydraulic fluid to and from the cylindrical chamber. A compression spring biases the port plates and body together. The vane pump according to the present invention is self-priming and achieves high pumping efficiency. | 12-22-2011 |
418231000 | In opposite directions | 1 |
418232000 | Spring or fluid bias | 1 |
20160115792 | Hydrostatic Positive Displacement Machine - A hydrostatic positive displacement machine has a cam ring for adjusting the displacement volume thereof. This cam ring is guided in translation by approximately diametrically arranged outer circumferential surface segments on associated inner surface segments of a housing of the positive displacement machine. | 04-28-2016 |