Class / Patent application number | Description | Number of patent applications / Date published |
416043000 | Responsive to condition of torque or thrust of device or driving or driven means or mechanism | 11 |
20080247873 | Method of reducing a structural unbalance in a wind turbine rotor and device for performing the method - Disclosed is a method of reducing a structural unbalance in a wind turbine rotor with pitch control and a control device for performing the method are provided. The method comprises the steps of: detecting a magnitude of the structural unbalance and its phase in relation the rotor's azimuth (θ) on the basis of a measurement of the rotor's azimuth (θ) and a measurement of the rotor speed or the generator speed (ω), establishing individual pitch angle offsets for each blade of the rotor on the basis of the magnitude and the phase, and adding the individual pitch angle offsets to the respective pitch angles of the blades of the rotor. | 10-09-2008 |
20090116963 | ACTIVE FORCE GENERATION SYSTEM FOR MINIMIZING VIBRATION IN A ROTATING SYSTEM - A method and device for reducing vibratory noise in a system with an integral rotating member includes independently operable drive systems for controlling the angular velocity of at least two independently rotatable masses. Control signals manipulate the drive system to rotate each mass at optimal speed, direction and phase to reduce noise induced in the system by the rotating member. | 05-07-2009 |
20090129924 | METHOD AND SYSTEM FOR OPERATING A WIND TURBINE - The present invention relates to a method and a system for operating a Wind Turbine (WTG), which WTG comprises a rotor comprising at least two blades, which blades are pitch regulated, where the rotor is connected to a shaft, which shaft is supported by bearings, and which shaft drives at least one generator, where the WTG uses a load regulation system for regulating the individual pitch of at least two blades. The object of the invention is to compensate for asymmetric load on the rotor in a wind turbine, a second object is to reduce wearing at shaft bearings in the wind turbine, and a third object is to increase the power production of a wind turbine. This can be achieved if the load regulation system measures the actual rotor load by at least one displacement sensor, which displacement sensor is measuring the bending of the main shaft, where the load regulation system based on the shaft bending regulates the individual pitch of the blades for compensating asymmetric load at the rotor. | 05-21-2009 |
20090180875 | METHOD FOR DETERMINING FATIGUE LOAD OF A WIND TURBINE AND FOR FATIGUE LOAD CONTROL, AND WIND TURBINES THEREFOR - A method of determining fatigue load of at least one operative wind turbine, comprising: providing a transfer function that associates an obtained at least one measurement value of a first sensor to an obtained at least one measurement value of a second sensor the at least one measurement value of the first sensor and the at least one measurement value of the second sensor being obtained by use of a reference wind turbine at which the first sensor and the second sensor are located; obtaining at least one measurement value of a third sensor, wherein the third sensor is located at the at least one operative wind turbine, and wherein the third sensor corresponds in type and position to the first sensor at the reference wind turbine; calculating at least one transfer function value corresponding to the obtained at least one measurement value of the third sensor by use of the provided transfer function; calculating the fatigue load of the at least one operative wind turbine based on the calculated transfer function value. | 07-16-2009 |
20090246021 | PULSED TORQUE CONTROL OF WIND TURBINE PITCH SYSTEMS - A wind turbine pitch control system is disclosed that provides a pulsed torque to the blade pitch actuator if continuous torque fails to adjust the blade pitch angle to a commanded pitch angle. This invention provides a cost-effective way to increase peak torque capability for existing wind turbines that have problems, under certain operating conditions, moving blades per the control command. | 10-01-2009 |
20090263245 | SYSTEMS AND METHODS INVOLVING WIND TURBINE TOWERS FOR POWER APPLICATIONS - A system for determining wind turbine tower base torque loads including a controller configured to determine a torque load of a base of a tower of a wind turbine according to a computation of an effective height of the wind turbine multiplied by a wind force upon a rotor of the wind turbine, and generate a control signal representing the torque load. A method for determining wind turbine tower base torque loads including determining a torque load of a base of a tower of a wind turbine according to the foregoing computation, and generating a control signal representing the torque load. | 10-22-2009 |
20120141273 | HELICOPTER VIBRATION CONTROL SYSTEM AND ROTARY FORCE GENERATOR FOR CANCELING VIBRATIONS - Helicopter rotating hub mounted vibration control system for a rotary wing hub having periodic vibrations while rotating at an operational rotation frequency. The vibration control system includes a housing attachable to the rotary wing hub and rotating with the hub at the operational frequency. The housing is centered about the rotary wing hub axis of rotation and has an electronics housing cavity subsystem and an adjacent rotor housing cavity subsystem. The rotor housing cavity contains a first coaxial ring motor with a first rotor and imbalance mass and a second coaxial ring motor with a second rotor and imbalance mass. The electronics housing cavity contains an electronics control system which receives sensor outputs and electrically controls and drives the first motor and the second motor such that the first imbalance mass and the second imbalance mass are driven at a vibration canceling rotation frequency greater than the operational rotation frequency wherein the helicopter rotary wing hub periodic vibrations are reduced. | 06-07-2012 |
20130094965 | WATERCRAFT PROPULSION DEVICE - A watercraft propulsion device includes an engine, a drive shaft, a propeller shaft, a shift mechanism, an operation force transmitting mechanism, and a magnetostrictive sensor. The drive shaft transmits power from the engine. The propeller shaft is rotationally driven by power transmitted from the drive shaft. The shift mechanism changes a rotation direction of power transmitted from the drive shaft to the propeller shaft. The operating force transmitting mechanism connects to the shift mechanism and transmits a shift operation force to the shift mechanism to cause the shift mechanism operate. The magnetostrictive sensor detects a load acting on the operation force transmitting mechanism. | 04-18-2013 |
20130183153 | SYSTEM FOR DETECTING AND CONTROLLING LOADS IN A WIND TURBINE SYSTEM - A wind turbine system comprising a rotatable hub, wind turbine blades attached to the hub, a rotatable shaft mechanically coupled to the hub, a non-shaft-contacting sensor assembly comprising sensors for detecting signals representative of loads induced in the rotatable shaft and a processor for analyzing the signals representative of the loads induced in the rotatable shaft and providing control signals to in response to the induced loads. | 07-18-2013 |
20140086747 | ASYMMETRIC LOAD CONTROL FOR TORSION FATIGUE REDUCTION IN A WIND TURBINE TOWER - A method and system for reducing a torsional movement and/or a torsional loading of a tower of a wind turbine is disclosed includes generating a tower torsion signal with a detection system and providing the signal to an asymmetric load control assembly. The tower torsion signal may correspond to an actual torsional movement of the tower or a torsional loading of the tower. The asymmetric load control assembly is configured to mitigate an asymmetric load acting on the wind turbine using the tower torsion signal. | 03-27-2014 |
20150132130 | WIND TURBINE NOISE AND FATIGUE CONTROL - Embodiments of wind turbine control systems, and related methods, are disclosed herein. For example, a wind turbine control system may include: a measurement system, including one or more measurement devices disposed on a blade of a wind turbine, to generate a measurement signal representative of a response of the blade to turbulence or flow non-uniformity; a force generation system to generate lift proximate to a trailing edge of the blade by generating a blowing jet of air at the trailing edge of the blade in response to a control signal; and a controller device to generate the control signal, based at least in part on the measurement signal, for provision to the force generation system to reduce the response of the blade to turbulence or flow non-uniformity. Other embodiments may be disclosed and/or claimed. | 05-14-2015 |