Class / Patent application number | Description | Number of patent applications / Date published |
415173700 | Between axial flow runner and vane or vane diaphragm structure | 47 |
20080247867 | GAP SEAL IN BLADES OF A TURBOMACHINE - A gap seal ( | 10-09-2008 |
20090047123 | Gas Turbine Engine Systems Involving Hydrostatic Face Seals with Integrated Back-Up Seals - Gas turbine engine systems involving hydrostatic face seals with back-up seals are provided. In this regard, a representative seal assembly for a gas turbine engine includes: a hydrostatic seal having a seal face and a seal runner; and a back-up seal; wherein, in a normal mode of operation of the hydrostatic seal, interaction of the seal face and the seal runner maintains a pressure differential within the gas turbine engine and, in a failure mode of operation of the hydrostatic seal, the back-up seal maintains a pressure differential within the gas turbine engine. | 02-19-2009 |
20090067997 | Gas turbine engine with canted pocket and canted knife edge seal - A gas turbine engine is provided with turbine sealing structures including knife edge seals which extend at an angle relative to an axial center line of the engine. Each knife edge seal is associated with a control pocket defined between a radially inner surface and a spaced radially outer surface. The control pockets and their associated knife edge seals create a difficult flow path to prevent leakage into radially inner portions of the turbine section. | 03-12-2009 |
20090092485 | SEAL ASSEMBLY RETENTION FEATURE AND ASSEMBLY METHOD - A seal assembly includes a body having two circumferential sides, a leading end, and a trailing end. At least one of the circumferential sides includes a first channel sidewall, a second channel sidewall, and a channel bottom wall that together define a seal channel for receiving a seal. The seal channel includes a slot that cooperates with a tab on the seal to facilitate securing the seal within the seal channel. | 04-09-2009 |
20090142189 | ABRADABLE LABYRINTH TOOTH SEAL VANE SHROUD THROUGH FLOW-PLATFORM COVER - A seal assembly ( | 06-04-2009 |
20090191050 | SEALING BAND HAVING BENDABLE TANG WITH ANTI-ROTATION IN A TURBINE AND ASSOCIATED METHODS - The turbine includes a plurality of successive stages each having a rotatable disk and blades carried thereby. A pair of adjacent rotatable disks define an annular gap therebetween and have respective opposing sealing band receiving slots aligned with the annular gap. At least one of the rotatable disks has at least one notch therein coupled to the respective sealing band receiving slot, and a sealing band is in the opposing sealing band receiving slots to seal the corresponding annular gap. The sealing band includes at least one sealing strip and at least one movable locking tang carried thereby and extending into the at least one notch to define an anti-rotational feature for the sealing band. | 07-30-2009 |
20090238683 | Vane with integral inner air seal - A stator vane segment for a gas turbine engine includes at least one airfoil joined to an outer shroud and an inner platform. A sealing element having a first platform radially inward of the inner platform and an abradable material covering at least a portion of the first platform is integrally joined to the inner platform. | 09-24-2009 |
20090269190 | Arrangement for automatic running gap control on a two or multi-stage turbine - On a two or multi-stage turbine, expansion rings are provided in all stages at the sides of the rotors for passive, continuous running gap control whose thermal expansion and contraction behavior corresponds to that of the rotors and which are connected to radially moveable upstream and downstream stator vanes ( | 10-29-2009 |
20090324394 | Sealing arrangement in a gas turbine engine - A compressor of a gas turbine engine comprises blades | 12-31-2009 |
20090324395 | Method of repairing knife edge seals - A method of repairing a gas turbine knife edge seal assembly in which assembly is included a used honeycomb ring seal and a knife edge. The method includes removing the used honeycomb ring seal, removing material from the knife edge to a first knife edge radial height, installing a replacement honeycomb ring seal with a stock radial thickness, and removing material from the replacement honeycomb ring seal to a finished radial thickness for sealable engagement with the knife edge. The finished radial thickness of the replacement honeycomb ring seal establishes a first radial gap between an inner annular surface of the replacement honeycomb ring seal and the knife edge before the knife edge seal assembly begins rotating in the gas turbine. | 12-31-2009 |
20100074734 | Turbine Seal Assembly - A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members. | 03-25-2010 |
20100129206 | IMPULSE TURBINE - An impulse turbine is provided. By providing brush seals on the free ends of the guide vanes, which form an acute angle with the radial line in relation to the radial line in the direction of rotation of the rotor, leakage losses may be reduced and the rotor friction between the guide surfaces may be reduced. | 05-27-2010 |
20100143104 | OPTIMIZED TURBOCHARGER BEARING SYSTEM - A turbocharger system, in certain embodiments, includes a compressor, a turbine, a shaft of common diameter coupling the compressor to the turbine, and a first fluid film bearing disposed about the shaft at a compressor end portion of the shaft. The system also includes a second fluid film fixed pad bearing disposed about the shaft at a turbine end portion of the shaft, wherein the first and second fluid film fixed pad bearings have different clearance ratios, effective lengths, or both, relative to one another. The system, in some embodiments, includes a compressor fluid film fixed pad bearing and a turbine fluid film fixed pad bearing, wherein the compressor and turbine fluid film fixed pad bearings have different clearance ratios and effective lengths, relative to one another. | 06-10-2010 |
20100143105 | COMPRESSOR STATOR BLADE AND COMPRESSOR ROTOR BLADE - A compressor stator blade | 06-10-2010 |
20100178160 | DEVICE AND SYSTEM FOR REDUCING SECONDARY AIR FLOW IN A GAS TURBINE - A device for reducing secondary airflow in a gas turbine is disclosed. The device includes an inter-stage sealing member located between a plurality of first turbine buckets attached to a first rotor disk, and a plurality of second turbine buckets attached to a second rotor disk. The first rotor disk and the second rotor disk are rotatable about a central axis. The inter-stage sealing member is configured to be attached in a fixed position relative to the first rotor disk and the second rotor disk, and to contact the plurality of first buckets and the plurality of second buckets in a sealing engagement. | 07-15-2010 |
20100209233 | CATENARY TURBINE SEAL SYSTEMS - In one embodiment, a catenary seal structure may be mechanically supported only by two adjacent rotor wheels to isolate a volume between the two adjacent rotor wheels. The catenary seal structure may be annularly disposed about the rotational axis of the adjacent rotor wheels. | 08-19-2010 |
20100239414 | APPARATUS FOR TURBINE ENGINE COOLING AIR MANAGEMENT - An exemplary embodiment of the invention is directed to a turbine engine having a rotatable turbine rotor assembly, a stationary nozzle assembly disposed adjacent thereto and a wheel space defined therebetween. The wheel space receives cooling air therein and includes a sealing feature located on the first, rotatable turbine rotor assembly and extending axially into the wheel space and a sealing land assembly having a sealing land associated with a moveable member installed in an opening in the second, stationary nozzle assembly. A biasing member constructed of shape memory alloy is associated with the moveable member and operates to bias the moveable member, and associated sealing land, axially into the wheel space towards the sealing feature as the turbine engine transitions from a cold state to a hot state to reduce the release of cooling air from within the wheel space. | 09-23-2010 |
20100254806 | METHODS, SYSTEMS AND/OR APPARATUS RELATING TO SEALS FOR TURBINE ENGINES - A seal formed between at least two blades in the turbine of a turbine engine, a first turbine blade and a second turbine blade, wherein one of the turbine blades comprises a turbine rotor blade and the other turbine blade comprises a turbine stator blade, and wherein a trench cavity and the seal is formed between the first turbine blade and the second turbine blade when first turbine blade is circumferentially aligned with the second turbine blade, the seal comprising: a cutter tooth and a honeycomb; wherein: the cutter tooth comprises an axially extending rigid tooth that is positioned on one of the first turbine blade and the second turbine blade and the honeycomb comprises an abradable material that is positioned on the other of the first turbine blade and the second turbine blade; and the cutter tooth and the honeycomb are positioned such that each opposes the other across the trench cavity when the first turbine blade is circumferentially aligned with the second turbine blade. | 10-07-2010 |
20100290898 | KNIFE EDGE SEAL ASSEMBLY - A seal assembly for a gas turbine engine is provided that includes a seal support member, at least one knife edge seal blade member, and at least one cooling member. The seal support member is configured for rotation within the gas turbine engine around an axial centerline of the engine. The support member has a thickness extending between a first surface and a second surface. The blade member extends outwardly from the first surface of the support member. The blade member has a central portion that extends between a base end and a distal knife edge end. The base end is attached to the first surface of the seal support member. The cooling member extends outwardly from the second surface, and is oppositely aligned with the blade member. | 11-18-2010 |
20110164964 | SEALING AND PURGING ARRANGEMENT FOR A MAIN BEARING REGION - Apparatus for sealing and purging a bearing region includes a bearing housing having at least one hole that allows a flow of air to flow through the at least one hole, and at least one bearing seal that allows the flow of air to flow through the at least one bearing seal, thereby creating a pressure difference across the bearing seal. The apparatus also includes an air directional device having at least a portion of the flow of air to flow adjacent to the air directional device, and a pair of components having a gap between the pair of components that allows the at least a portion of the flow of air to flow through the gap, thereby purging the gap. | 07-07-2011 |
20110182721 | SEALING ARRANGEMENT FOR A GAS TURBINE ENGINE - The present invention relates to a sealing arrangement between a stator assembly and a rotor | 07-28-2011 |
20120039707 | METHOD OF REPAIRING KNIFE EDGE SEALS - A knife edge seal assembly includes at least one knife edge and at least one honeycomb ring seal. The at least one knife edge has material removed to a first knife edge radial height and the least one honeycomb ring seal has material removed to a finished radial thickness for sealable engagement with the at least one knife edge. The finished radial thickness of the replacement honeycomb ring seal establishes a first radial gap between an inner annular surface of the replacement honeycomb ring seal and the knife edge before the knife edge seal assembly begins rotating in the gas turbine. | 02-16-2012 |
20120134787 | Abradable For Stator Inner Shroud - The present invention relates to a pressure seal ( | 05-31-2012 |
20120177485 | COVER PLATE WITH INTERSTAGE SEAL FOR A GAS TURBINE ENGINE - An air seal assembly for a gas turbine engine includes a first cover plate with a radially extending knife edge seal defined about and axis of rotation. The first cover plate is mountable to a first rotor disk for rotation therewith, the first radially extending knife edge seal interfaces with a vane structure. A second cover plate with a second radially extending knife edge seal defined about the axis of rotation, the second cover plate mountable to the second rotor disk for rotation therewith. The second radially extending knife edge seal interfaces with the vane structure. | 07-12-2012 |
20130045089 | GAS TURBINE ENGINE SEAL ASSEMBLY HAVING FLOW-THROUGH TUBE - A seal assembly for a gas turbine engine includes an annular body and a flow-through tube that extends through the annular body. The flow-through tube includes an upstream orifice, a downstream orifice and a tube body that extends between the upstream orifice and the downstream orifice. The tube body establishes a gradually increasing cross-sectional area between the downstream orifice and the upstream orifice. | 02-21-2013 |
20130045090 | TURBOMACHINE SEAL ASSEMBLY - A turbomachine seal assembly includes a base member, a rocker arm pivotally mounted to the base member, and a seal element fixedly mounted to the rocker arm. The seal element is configured and disposed to selectively shift relative to the base member. | 02-21-2013 |
20130051993 | ROTATING TURBOMACHINE SEAL - An exemplary turbomachine seal assembly includes a ring seal that has a radially-facing sealing surface, an axially-facing sealing surface, and a first tapered surface. The turbomachine seal assembly also includes a spacer that has a second tapered surface. The second tapered surface interfaces with the first tapered surface to bias the radially facing sealing surface and the axially facing sealing surface toward a sealing position. | 02-28-2013 |
20130177405 | WET TURBOMACHINE - A turbomachine includes a motor including a rotor assembly and a stator assembly. A sleeve fluidly separates the rotor assembly from the stator assembly. The sleeve has first and second ends axially spaced from one another. In one example, first and second seals are arranged at the first end and fluidly separate the rotor assembly from the stator assembly. The second seal is arranged downstream from the first seal relative to the rotor assembly. In another example, the sleeve includes wet and dry sides. A first seal is arranged at the first end on the wet side. A drain is provided in the housing and arranged in a region downstream from the first seal. The drain fluidly connects the region to an exterior of the housing. | 07-11-2013 |
20130183145 | HYBRID INNER AIR SEAL FOR GAS TURBINE ENGINES - A turbine section has a turbine rotor carrying turbine blades. The turbine blades include seal members at a radially inner location. A vane section is formed of a plurality of circumferentially spaced vane components, each of which has an airfoil extending radially outwardly of a platform. A first seal member is fixed to the platform, and is positioned to be adjacent a seal from a blade which is positioned in one axial direction relative to the first seal member. A second seal member extends circumferentially beyond at least a plurality of the vane components and is positioned to be adjacent a seal member of a blade on an opposed axial side from the first blade. A vane component is also disclosed and claimed. | 07-18-2013 |
20130189087 | NEAR FLOW PATH SEAL FOR A TURBOMACHINE - A near flow path seal member for a turbomachine includes a seal body having a seal support member including a first end portion that extends to a second end portion through an intermediate portion. An arm member extends from the first end portion of the seal body. The arm member has a first end that extends to a second end to define an axial dimension of the arm member, a first edge that extends to a second, opposing edge to define a circumferential dimension of the arm member, and a surface having a profile that establishes a thickness variation of the arm member in each of the axial dimension and the circumferential dimension. | 07-25-2013 |
20130294897 | SHAPED RIM CAVITY WING SURFACE - A shaped rim cavity wing includes an upper surface and a lower surface. The lower surface has a geometric shape to control the separation of airflow as it passes around the lower surface to the top surface. A point of maximum extent defines the boundary between the upper surface and the lower surface, wherein the point of maximum extent defines a corner that that separates airflow from the shaped rim cavity rim and creates a flow re-circulation adjacent to the top surface of the shaped rim cavity wing. | 11-07-2013 |
20140003919 | FINNED SEAL ASSEMBLY FOR GAS TURBINE ENGINES | 01-02-2014 |
20140037435 | SYSTEMS AND APPARATUS RELATING TO SEALS FOR TURBINE ENGINES - A seal in a turbine of a combustion turbine engine is described. The seal is formed within a trench cavity defined between a rotor blade and a stator blade. The stator blade includes a sidewall projection and the rotor blade includes an angel wing projection extending toward the stator blade. The side wall projection overhangs the angel wing projection. The seal include: a port disposed on an inboard surface of the stator projection; and deflecting structure disposed on the angel wing projection. The deflecting structure may be configured to receive the fluid expelled from the port and deflect the fluid toward an inlet of the trench cavity. | 02-06-2014 |
20140112766 | GAS TURBINE INCLUDING BELLY BAND SEAL ANTI-ROTATION DEVICE - A sealing band is located in opposing sealing band receiving slots of adjacent turbine disks to seal an annular gap therebetween. A through hole is defined in one of the disks, wherein the through hole defines a longitudinal hole axis and extends to the sealing band receiving slot in the disk. At least one engagement feature is defined on the disk and extends laterally of the through hole, perpendicular to the longitudinal hole axis. A pin member extends through the hole and is positioned within the sealing band receiving slot passing through an opening in the sealing band for resisting movement of the sealing band relative to the disk. The pin member includes a laterally extending cooperating feature positioned in engagement with the engagement feature for retaining the pin within the opening in the sealing band. | 04-24-2014 |
20140127007 | GAS TURBINE ENGINE ROTOR SEAL - A rotary seal for sealing a bladed rotor of a gas turbine engine to a stator thereof comprises a sealing element and a sealing element support comprising a radially outer edge portion on which the sealing element is fixed, a radially inner mounting portion adapted to be attached to a supported rotor hub, and a flexible, medial web portion extending between the radially outer edge portion and the radially inner mounting portion. | 05-08-2014 |
20140147257 | FAN SHROUD AND SEAL RING ASSEMBLY, AND METHOD THEREOF - A fan shroud and seal ring are assembled together to allow a condenser, radiator, and fan module (CRFM) to be vertically loaded into an engine compartment of a vehicle to be mounted to the vehicle chassis and engine with a fan stator. The fan shroud has a plurality of first attachment components, and the seal ring has a plurality of second attachment components, each of which corresponds to a first attachment component. Each first attachment component engages with a corresponding second attachment component to secure the seal ring to the fan shroud, such that the seal ring is positioned around at least a portion of the fan stator after the CRFM has been mounted and the assembly is in its final configuration. | 05-29-2014 |
20140255168 | INTER-MODULE FLOW DISCOURAGER - An assembly for a gas turbine engine includes a first module, a second module, and a flow discourager. The second module is connected to the first module along a joint. The flow discourager is connected to the first module and extends to be received in a notch in the second module. The flow discourager acts to direct an ingestion gas flow away from the joint between the first module and the second module. | 09-11-2014 |
20140255169 | GAS TURBINE INCLUDING BELLYBAND SEAL ANTI-ROTATION DEVICE - A turbine including a plurality of stages, each stage including a rotatable disk and blades carried thereby. An annular gap defined between a pair of adjacent rotatable disks. A sealing band is located in opposing sealing band receiving slots formed in the adjacent disks to seal the annular gap, the sealing band including band engagement structure. A disk engagement structure is defined in the pair of adjacent rotatable disks. The disk engagement structure extends axially into the pair of adjacent rotatable disks and circumferentially aligns with the band engagement structure. A clip member is positioned in engagement with the sealing band through the band engagement structure and in engagement with the pair of adjacent rotatable disks through the disk engagement structure. The clip member restricts movement of the sealing band in only a circumferential direction of the slots. | 09-11-2014 |
20150010393 | TURBINE SEAL SYSTEM AND METHOD - A system includes a multi-stage turbine that includes a first turbine stage having a first wheel having a plurality of first blade segments spaced circumferentially about the first wheel. The turbine also includes a second turbine stage having a second wheel having a plurality of second blade segments spaced circumferentially about the second wheel. The turbine also includes a seal assembly extending axially between the first and second turbine stages. The seal assembly includes a first coverplate coupled to the first turbine stage. The first coverplate includes a first air director. The seal assembly also includes a second coverplate coupled to the second turbine stage. The second coverplate comprises a second air director. The seal assembly also includes an interstage seal. The first coverplate, the second coverplate, or both are configured to support the interstage seal. | 01-08-2015 |
20150071771 | INTER-STAGE SEAL FOR A TURBOMACHINE - An inter-stage seal for a turbomachine includes a sealing member extending from a first end to a second end through an intermediate portion having a sealing surface, a first mounting member extending from a first end portion coupled to the sealing member adjacent the first end to a second, cantilevered end portion having a first rotor mounting element, and a second mounting member extending from a first end portion coupled to the sealing member adjacent the second end to a second, cantilevered end portion having a second rotor mounting element. | 03-12-2015 |
20150322957 | COMBINED RADIAL AND THRUST BEARING AND WET ROTOR PUMP - A device having a first and a second component, wherein the second component includes an opening, wherein the first component is mounted such that the first component can rotate in the radial direction and on one side in the axial direction in the opening of the second component about an axis of the first component, wherein the device is formed in such a manner that a fluid can flow in the axial direction through the opening of the second component, wherein the device also comprises at least two bearing shells, and rolling bodies, wherein a first of the bearing shells is fastened to or axially supported on the first component and a second of the bearing shells is fastened to or axially supported on the second component, wherein the rolling bodies are situated in the space circumscribed by the running faces of the two bearing shells, as a result of which a rolling bearing that can be loaded in the axial direction on one side is formed for axially bearing the first component in the second component, and wherein a sliding bearing for radially bearing the first component on the second component is formed by a cylindrical surface of the first component and an inner lateral surface of the second bearing shell and/or by an in particular cylindrical surface of the opening of the second component and an outer lateral surface of the first bearing shell. | 11-12-2015 |
20150377049 | BRUSH SEAL SYSTEM FOR SEALING A CLEARANCE BETWEEN COMPONENTS OF A TURBO ENGINE THAT ARE MOVABLE IN RELATION TO ONE ANOTHER - A brush seal system for sealing a clearance between components of a turbo engine that are movable in relation to one another, in particular of a thermal gas turbine, is disclosed. The brush seal system includes a brush seal housing, which accommodates at least one brush head of a brush seal, where the brush seal housing includes a first component having a cover plate section and a second component having a support plate section. The first component includes an axial flange forming a fish mouth seal on an end opposite the cover plate section. A thermal gas turbine having such a brush seal system is also disclosed. | 12-31-2015 |
20150377052 | SEGMENTED SEAL FOR A GAS TURBINE ENGINE - A seal segment according to an exemplary aspect of the present disclosure includes, among other things, a first axial wall, a second axial wall radially spaced from the first axial wall and a radially outer wall that interconnects the first axial wall and the second axial wall. At least one curved member is radially inwardly offset from the radially outer wall and extending between the first and second axial walls. | 12-31-2015 |
20160010476 | SHAPED RIM CAVITY WING SURFACE | 01-14-2016 |
20160123168 | METHODS AND SYSTEM FOR FLUIDIC SEALING IN GAS TURBINE ENGINES - A sealing system for a rotatable element defining an axis of rotation includes a rotor blade including a shank and an angel wing extending axially from the shank. The sealing system also includes a stator vane positioned axially adjacent the rotor blade. The stator vane includes a platform extending in an axial direction over the angel wing such that a clearance gap is defined therebetween. The sealing system also includes a sealing mechanism including a portion of the platform and a portion of the angel wing. The sealing mechanism includes at least one obliquely oriented surface such that the clearance gap defines a converging nozzle. | 05-05-2016 |
20160123169 | METHODS AND SYSTEM FOR FLUIDIC SEALING IN GAS TURBINE ENGINES - A sealing system for a rotatable element defining an axis of rotation includes a rotor blade including a shank and an angel wing extending axially from the shank. The sealing system also includes a stator vane positioned axially adjacent the rotor blade. The stator vane includes a platform extending in an axial direction over the angel wing such that a clearance gap is defined therebetween. The sealing system also includes a sealing mechanism including a portion of the platform and a portion of the angel wing. The sealing mechanism includes a plurality of circumferentially-spaced grooves defined in the stator platform. | 05-05-2016 |
20160160688 | ATTACHMENT OF PILOTING FEATURE - A fan assembly for use in a gas turbine engine of an aircraft includes a fan disk having a number of fan blades and a windage shield coupled to the fan disk to move therewith. The fan assembly supplies air for use in the engine. The windage shield rotates with the fan disk during operation of the gas turbine engine and directs air supplied by the fan blade. | 06-09-2016 |