Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Plural stations

Subclass of:

398 - Optical communications

398140000 - TRANSMITTER AND RECEIVER SYSTEM

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
398165000 Plural stations 9
20080212977FIBER OPTIC TRANSMISSION LINES ON AN SOC - An optical transmission method. Signal transmissions between cores of an integrated circuit are performed. Each signal transmission is between two cores of a different pair of cores of the integrated circuit. Each signal transmission includes transmission of an optical signal in the visible or infrared portion of the electromagnetic spectrum at a wavelength that is specific to each different pair of cores and is a different wavelength for each different pair of cores. There is no overhead for decoding or arbitration in preforming the signal transmissions that would otherwise exist if a same wavelength for the optical signals were permitted for pairs of cores of the different pairs of cores.09-04-2008
20100209116OPTICAL TRANSMISSION SYSTEM, OPTICAL END TERMINAL EQUIPMENT, AND OPTICAL REPEATER EQUIPMENT - The present invention easily provides a network with high stability by setting a transmission rate without using a supervisory network in an optical repeater transmission system that uses multi-rate transponders. When setting a transmission rate of a multi-rate transponder, a rate changing data pattern is transmitted to a main signal to easily realize transmission rate setting for opposed equipment in an optical repeater transmission system through transmission and reception of the setting information.08-19-2010
20110211845Method and apparatus for phostonic stack system for vehicle control/sense - An avionics system for a plane includes a plurality of nodes disposed throughout the plane, each node performing a function. The system includes an optical network in communication with the nodes and through which the nodes communicate. The system includes at least one of the nodes having a hardwired interpreter that interprets the information transmitted from another one of the nodes via the optical network. A method for operating a plane includes the steps of communicating information through an optical network between a plurality of nodes disposed throughout the plane, each node performing a function. There is the step of interpreting with at least one of the nodes having a hardwired interpreter the information transmitted from another one of the nodes via the optical network. A phostonic stack.09-01-2011
20120020674STATUS LINK FOR MULTI-CHANNEL OPTICAL COMMUNICATION SYSTEMS - A robust and redundant status link is established by a first multi-channel optoelectronic device with a second multi-channel optoelectronic device in a multi-channel communication link. Transmitter bias currents are effectively modulated with a status link modulation signal representative of status data and subsequently modulated with primary data modulation signals. The resulting signals are transformed into optical signals and transmitted over the link as main communication links combined with a status link. At the second device, the optical signals are received and converted to electrical signals. The receipt of the optical signals creates multiple receiver bias currents, which may be monitored to detect the status link modulation signal. The second device may adjust various operating parameters in response to the information conveyed by the status link. For instance, devices can use status links to operate above nominal eye safety limits and/or to adjust transmit power to compensate for degradation effects.01-26-2012
20120093520MESH NODE FOR A COMMUNICATION MESH NETWORK STRUCTURE OF A NETWORKED CONTROL SYSTEM - The invention relates to a mesh node for a communication mesh network structure of a networked control system, particularly a lean and mean infrared mesh node for a communication mesh network infrastructure of a lighting system such a green house lighting system. A basic idea of the invention is to implement a mesh node with a technical simple construction in the form of a base, on which optical transmitters are and optical receivers are arranged. An embodiment of the invention relates to a mesh node (04-19-2012
20160105242Optical Communications Method and Apparatus - An optical communications method and an optical communications apparatus are provided. The method is executed on a communications node that includes an input optical modulator array and an output optical modulator array. The input optical modulator array includes N input optical modulators. The method includes determining at least two local input areas from the input optical modulator array, so that each input optical modulator in each local input area is used to receive a foreign signal light. The method also includes determining at least two local output areas from the output optical modulator array. Each output optical modulator in each local output area is used to send the foreign signal light, and each input optical modulator in a local input area is capable of transmitting the signal light to each output optical modulator in a corresponding local output area.04-14-2016
398166000 Address directing connections 1
20120275798PROGRAMMABLE OPTICAL INTERCONNECT FOR MULTI-NODE COMPUTER SYSTEMS - A device for connecting a plurality of assemblage-mounted optical transmitters to a plurality of assemblage-mounted optical receivers mounted on a selected side of an assemblage includes a planar frame configured to be coupled to the selected side of the assemblage. A plurality of first redirecting structures is affixed to the planar frame and each is configured to receive a first optical signal from a different assemblage-mounted optical transmitter. Each first redirecting structure transmits a second optical signal, corresponding to the first optical signal, along a preselected path. A plurality of second redirecting structures is affixed to the planar frame and each is configured to receive the second optical signal from a different one of the first redirecting structures. Each of the second redirecting structures transmits a third optical signal, corresponding to the second optical signal, to a different one of the assemblage-mounted optical receivers.11-01-2012
398167500 Central or master station 2
20090097861Passive optical network system and optical line terminating apparatus - A passive optical network (PON) system which enables plural types of ONUs having different signal transmission speeds to be connected to one OLT. An optical line terminating apparatus (OLT) connected to plural types of ONUs having different signal transmission speeds through an optical distribution network includes an optical transmitter-receiver connected to the optical distribution network, a transmission/reception line interface connected to a wide area network, a downstream frame processing section for converting a packet received by the transmission/reception line interface from the wide area network into a downstream frame containing identification information on a destination ONU in a header, and a downstream transmission controller for modulating the downstream frame at a speed corresponding to a signal transmission speed of the destination ONU and outputting the modulated frame to an electrical/optical converter connected to the optical transmitter-receiver.04-16-2009
20120294626METHOD TO ASSIGN A CUSTOMER PREMISES EQUIPMENT TO A SUBSCRIBER'S DATA RECORD, DEMARCATION POINT UNIT, AND NETWORK ELEMENT - The invention relates to a method for a telecommunication's network with a central office (CO), an access network, a multiple of demarcation point units (DPUn) and customer premises equipment (ONTn) connected thereto, to assign a customer premises equipment (ONTn) to a subscriber's data record registered in the central office (CO), where when a customer premises equipment (ONTn) reports the received signal amplitude in regular reporting intervals to the central office (CO), a customer premises equipment (ONTn) is assigned to a subscriber's data record by uniquely influencing the signal amplitude by the demarcation point unit (DPUn) assigned to the customer premises equipment (ONTn), the assignment of which to a certain subscriber's data record is known in the central office (CO), where the influencing of the signal amplitude is performed such that a digital signature proper to the demarcation point unit (DPUn) is imprinted on the signal amplitude, where the bit clock underlying the signature is adapted to the reporting intervals, and that the central office (CO) recovers the signature of the demarcation point unit (DPUn) from the sequence of signal amplitudes reported from the customer premises equipment (ONTn) and derives therefrom the assignment between customer premises equipment (ONTn) and subscriber's data record, as well as to a demarcation point unit, and to a network element.11-22-2012

Patent applications in all subclasses Plural stations

Website © 2025 Advameg, Inc.