Class / Patent application number | Description | Number of patent applications / Date published |
398161000 | Using delay | 7 |
20080212976 | OPTICAL RECEIVER AND OPTICAL TRANSMITTER - An optical receiver for receiving a transmission light signal which is subjected to an optical phase modulation based on a data signal to be transmitted and has a dither signal superposed thereon includes a delay interferometer to which the transmission light signal having the dither signal superposed thereon is applied and which converts the transmission light signal into a light intensity modulation signal based on a control signal, a photodetector for converting two light outputs of the delay interferometer into an electric signal, two current detecting sections for differentially detecting a photocurrent flowing to the photodetector as a detection voltage, a data clock reproducing section for outputting the data signal and a clock signal based on an output of the photodetector, two filter sections for extracting dither signal components of the differential detection voltages respectively, and a control section for determining the control signal and applying the control signal to the delay interferometer in such a manner that one of the differential detection voltages is a maximum and the other is a minimum, and both of the dither signal components which are extracted have a minimum amplitude. | 09-04-2008 |
20080240728 | Electrical generation of return-to-zero (RZ) data pattern with flexible duty cycle adjustment for optical transmission - An electrical return to zero (RZ) encoder converts non-return to zero (NRZ) data, into of RZ data patterns with a flexibility for duty cycle adjustment so that any RZ data pattern may be provided for a specific application's need. A duty cycle of>50% or<50% may be achieved by selecting between a clock signal or its complement and adjusting its delay. | 10-02-2008 |
20090003838 | Optical Data Communication System Having Reduced Pulse Distortion and Method of Operating the Same - An optical data transmission system and a method of communicating data. In one embodiment, the transmission system is part of an optical data communication system that includes: (1) an optical pulse transmitter configured to generate amplitude-modulated optical pulses at a fixed repetition rate, (2) an optical filter coupled to an output of the optical pulse transmitter, having a transmission notch at the fixed repetition rate and configured to filter the optical pulses and (3) an optical detector coupled to an output of the optical filter and configured to produce an output electrical signal representative of intensities of the optical pulses provided by the optical filter. | 01-01-2009 |
20090269079 | Optical signal transmission control apparatus and optical signal transmission control method - An optical signal transmission control apparatus that controls transmission of optical signals transmitted via a plurality of redundant routes. The optical signal transmission control apparatus includes a delay difference adjusting unit that adjusts a transmission delay difference between the optical signals of each route by converting a wavelength of the optical signal and making the optical signal with a converted wavelength pass through a waveguide in which a transmission delay of the optical signal changes continuously depending on the wavelength, and a waveform degradation compensating unit that compensates degradation of a waveform of the optical signal, while maintaining the transmission delay difference adjusted by the delay difference adjusting unit. | 10-29-2009 |
20110076031 | GEOGRAPHICALLY-DIVERSE REDUNDANT SERVERS OVER OPTICAL CONNECTIONS WITH MANAGED PATH DIFFERENTIAL DELAY - The present disclosure relates to systems and methods for geographically-diverse redundant servers and the like interconnected via wavelength division multiplexed (WDM) systems with managed path differential delay of the WDM systems. The present disclosure provides transport systems and methods incorporating absolute time references, such as global positioning system (GPS) time references and/or the like, and selective buildout delays, such as first-in, first-out (FIFO) buildout delays and/or the like. In one exemplary embodiment, the transport systems and methods of the present invention are used in conjunction with the International Business Machine Corporation (IBM) Geographically-Dispersed Parallel Sysplex (GDPS) integrated, automated application and data availability solution to meet and/or exceed the associated 10 microseconds transmit/receive path differential delay requirement. Other comparable uses are also contemplated herein, as will be obvious to those of ordinary skill in the art. | 03-31-2011 |
20130016982 | ADJUSTABLE DELAYER, METHOD FOR DELAYING AN INPUT SIGNAL AND POLAR TRANSMITTERAANM Henzler; StephanAACI MuenchenAACO DEAAGP Henzler; Stephan Muenchen DE - An adjustable delayer for adjustably delaying an input signal based on a delay adjustment input information describing a desired delay includes a plurality of series-connected tunable delay circuits, wherein a first of the tunable delay circuits is configured to receive the input signal. The adjustable delayer also includes a closed-loop control circuit configured to provide a first delay tuning information to tune a combined delay of the plurality of tunable delay circuits to fulfill a predetermined condition. The adjustable delayer also includes a combiner to combine the first delay tuning information with a second delay tuning information, that is based on the delay adjustment input information, to obtain a combined delay tuning information. The adjustable delayer is configured to tune a delay of one or more of the tunable delay circuits based on the combined delay tuning information. The adjustable delayer is configured to provide the output signal based on one or more signals present at outputs of one or more of the adjustable delay circuits. | 01-17-2013 |
20150071653 | MULTI-LEVEL DECODER WITH SKEW CORRECTION - An optical communication system, a transmitter, a receiver, and methods of operating the same are provided. In particular, a transmitter is disclosed as being configured to encode optical signals in accordance with a multi-level coding scheme. The receiver is configured to provide skew correction to the optical signals received from the transmitter by dividing a received signal into separate level-specific components and sampling each of the components with distinct sampling blocks. | 03-12-2015 |