Class / Patent application number | Description | Number of patent applications / Date published |
398097000 | Repeater | 11 |
20080267631 | Systems and methods for a multiple-input, multiple-output controller in a reconfigurable optical network - The present invention provides systems and methods to convert a reconfigurable optical node multiple-input multiple-output (MIMO) system to a single-input single-output (SISO) system suitable for a proportional-integral-differential (PID) control process. Advantageously, the present invention allows PID control to apply to a MIMO optical node by modeling the node as two SISO systems. The present invention optimizes the division of gain and loss between components in the reconfigurable optical node. This provides means to control the net gain and loss of a series of components when the component chain being controlled includes those components that have a single action affecting multiple channels and components that affect only one channel. The present invention utilizes control of a single quantity of amplifier gain minus attenuation for each channel, and the coupling together of all channels in the amplifier which makes the channels inter-dependent. | 10-30-2008 |
20090003830 | LOSS OF SIGNAL DETECTION - An apparatus and a method for accurately detecting Loss of Optical Power (LOS) by noise power cancellation effect and optical power is measured at two output ports of an athermal periodic filter, wherein one output port in the optical frequency domain, is aligned with the signal channels of an input WDM signal (on-grid port), whereas the second output port is aligned complementary to the first output port (off-grid port). In a preferred embodiment, the apparatus computes the ratio of the measured optical powers at the two output ports of the periodic filter, and comparing them to a threshold value that is determined from the overall common-mode rejection ratio (CMRR) of the detection apparatus. In an alternative embodiment, the apparatus additionally compares the optical power measured at the on-grid port to a threshold power that is determined from system design parameters. | 01-01-2009 |
20090238571 | OPTICAL TRANSMISSION SYSTEM AND METHOD FOR CHROMATIC DISPERSION COMPENSATION - An optical transmission system including an optical transmission path for transmitting WDM signals multiplexed different wavelength optical signals, the WDM signals including different bit rate optical signals or different modulation format optical signals; a repeater arranged in the optical transmission path, the repeater including a chromatic dispersion compensation unit for compensating chromatic dispersion compensation for the WDM signals; and a network management system including processes of determining a dispersion compensation ratio indicating the ratio with respect to the dispersion compensation amount at which the residual dispersion of the WDM signals are zero after transmission via the optical transmission path, on the bases of the mixture ratio of different optical signals included in the WDM signals, and variably setting the dispersion compensation amount for the in-line repeater according to the dispersion compensation ratio. | 09-24-2009 |
20110110667 | OPTICAL NETWORK AND OPTICAL SIGNAL MODULATION METHOD THEREOF - An optical network and an optical signal modulation method thereof are provided. The optical network includes an optical fiber and a remote node (RN). The RN receives a continuous carrier wave from the optical fiber and modulates the continuous carrier wave to generate a first frequency offset carrier wave The frequency of the first frequency offset carrier wave is different from that of the continuous carrier wave. A first user device re-modulates and loads data to the first frequency offset carrier wave to generate a first upstream signal. The frequency of the first upstream signal is the same as that of the first frequency offset carrier wave. The RN inputs the first upstream signal into the optical fiber. | 05-12-2011 |
20110274433 | MODULATION IN AN OPTICAL NETWORK - The invention relates to improvements in or relating to modulation in an Optical Network, and to an apparatus, a method and a communications network for modulation in an Optical Network. An apparatus is arranged to receive a modulated optical signal comprising a carrier wavelength and first data. The apparatus is arranged to substantially erase the first data from the optical signal by performing an inversion operation on the modulated optical signal. The apparatus is arranged to receive second data and to modulate the carrier wavelength with the second data for onward transmission of the second data. The inversion operation comprises applying a signal comprising an inverse of the first data to at least a portion of the modulated optical signal. The signal may further comprise the second data such that the modulation of the carrier wavelength and erasure of the first data is performed in a single operation. | 11-10-2011 |
20120087670 | OPTICAL REPEATER SYSTEM - The present invention relates to an optical relay system that transmits a band-limited multi-band frequency signal via an optical line. According to an embodiment of the present invention, since a remote unit includes a multiplexer that fixes a power flow direction to combine wireless signals of various bands and outputs the combined signals to a mobile terminal, or distributes wireless signals wireless signals received from the mobile terminal and fixes a power flow direction to output the distributed wireless signals, even if frequency bands of signals combined by the multiplexer overlap or are adjacent, power delivery in a direction opposite to the power delivery direction of a signal during a signal combining process can be prevented, reducing signal distortion, and thus improving efficiency in combining a number of signals. | 04-12-2012 |
20120106971 | OPTICAL TRANSMISSION DEVICE AND OPTICAL TRANSMISSION SYSTEM - An optical transmission device includes: an optical signal generator to generate and transmit an optical signal that transmits data; a detector to detect a number of active clients; and a processor to determine transmission rate of the optical signal according to the number of active clients and quality of the optical signal at an optical receiver. | 05-03-2012 |
20130129356 | OPTICAL COMMUNICATION SYSTEM - An optical communication system includes an optical-signal transmission unit transmitting an existing optical signal and a low-rate-signal superimposition unit superimposing a low-rate signal on the existing optical signal by intensity modulation. It further includes: a low-rate-signal extraction unit that extracts the low-rate signal from the existing optical signal on which the low-rate signal is superimposed and converts the extracted low-rate signal into a low-rate electric signal; an add-on optical-signal transmission unit that transmits an add-on optical signal; a low-rate-signal superimposition unit that superimposes a low-rate signal on the add-on optical signal by the intensity modulation based on the low-rate electric signal; and a repeater that repeats the add-on optical signal on which the low-rate signal is superimposed, to a transmission destination. | 05-23-2013 |
20140186043 | PASSIVE OPTICAL NETWORK REACH EXTENDER BASED ON WAVELENGTH TUNABLE OPTICAL MODULE AND METHOD THEREOF - Provided are a passive optical network reach extender based on a wavelength tunable optical module and a method thereof. According to an embodiment of the invention, a passive optical network reach extender includes a first optical splitter configured to receive an optical signal from an optical line terminal and split the signal into optical signals having a multiplexed wavelength, a wavelength tunable remote relay configured to receive the optical signals split from the first optical splitter, and select and control an available wavelength for each port, a wavelength multiplexer configured to multiplex a wavelength of the optical signal output from the wavelength tunable remote relay, and a second optical splitter configured to split the optical signal multiplexed by the wavelength multiplexer into a plurality of optical network units. | 07-03-2014 |
20160204865 | LINK ARCHITECTURE AND SPACECRAFT TERMINAL FOR HIGH RATE DIRECT TO EARTH OPTICAL COMMUNICATIONS | 07-14-2016 |
20160204866 | GROUND TERMINAL DESIGN FOR HIGH RATE DIRECT TO EARTH OPTICAL COMMUNICATIONS | 07-14-2016 |