Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Fault location

Subclass of:

398 - Optical communications

398009000 - DIAGNOSTIC TESTING

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
398010000 Fault location 75
20090097842SYSTEM AND METHOD FOR SONET EQUIPMENT FAULT MANAGEMENT - A fiber-optic communications interface (04-16-2009
20090129773Method and apparatus for isolating a location of a fault in a passive optical network - A method and apparatus of isolating a location of a fault in an optical network may include using communications traffic signals and network nodes to determine excess power losses without interrupting service or requiring additional external test equipment. A transmit optical network node is configured to measure the transmit power of multiple wavelengths of a transmitted optical signal. A receive optical network node is configured to measure the receive power of the same multiple wavelengths. Power differentials of the transmit and receive optical power for each wavelength may be calculated. Optical power losses as a function of the optical path distance between the transmit and receive optical network nodes my be determined. The data may be used to isolate the location of a fault in a passive optical network based on the differences between the optical power losses of the multiple wavelengths thereby reducing troubleshooting time and network downtime.05-21-2009
20100040363METHOD, SYSTEM, AND APPARATUS FOR MANAGING ALARMS IN LONG-REACH PASSIVE OPTICAL NETWORK SYSTEM - A method, system and apparatus for managing alarms in a Long Reach Passive Optical Network (LR-PON) system are disclosed. The method includes: obtaining a PON signal from an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) on one side; checking whether the obtained PON signal fails; and notifying the ONU or the OLT on the other side if the PON signal fails. The method, system and apparatus under the present invention monitor the LR-PON transmission quality and process various alarm indications raised in the LR-PON signal monitoring.02-18-2010
20100111521System and Method of Detecting and Locating Intermittent and Other Faults - A signal is conducted from a controller module onto a network via a first coupling. The signal is transmitted across the network and received at one or more receiver modules via one or more second couplings. At the one or more receiver modules, the received signal is analyzed and based upon the analysis, a determination is made as to whether a fault has occurred in the network and/or where the occurrence occurred.05-06-2010
20100135652FAULT DETECTING METHOD, SYSTEM, AND APPARATUS FOR PON SYSTEM - A fault detecting method, system, and apparatus for a PON system and an electrical relay apparatus are provided. The method includes the following steps. An electrical relay apparatus receives and detects a signal sent by a previous apparatus. If a defect is detected in the received signal, it is determined that a fault occurs to a transmission path between the previous apparatus and the electrical relay apparatus, and a signal with no defect is formed and sent to a next apparatus. If no defect is detected, the received signal is processed according to original processes and sent to the next apparatus. The next apparatus receives and detects the signal sent by the electrical relay apparatus. If a defect is detected in the signal sent by the electrical relay apparatus, it is determined that a fault occurs to a transmission path between the next apparatus and the electrical relay apparatus.06-03-2010
20100150546Management system for GPON based services - A computerized system and method for managing a passive optical network (PON) is disclosed. The system includes a detection and analysis module adapted for receiving uploaded measurement data from an optical line terminal (OLT) and at least one optical network terminal (ONT), and at least one of technical tools data, service failure data, and outside plant data. The detection and analysis module is adapted for determining a source of failure or potential failure in the PON by correlating the uploaded measurement data and the at least one of technical tools data and service failure data with information stored in a memory medium for the OLT and each ONT.06-17-2010
20100183294SPARING FOR MULTI-WAVELENGTH OPTICAL TRANSMITTER - A multi-wavelength optical transmission system includes a plurality of primary optical transmitters, each being configured to provide directly modulated analog optical signals at non-uniformly spaced apart wavelengths. An optical multiplexer having a plurality of optical input ports receives the analog optical signals from each of the plurality of primary optical transmitters and provides a wavelength division multiplexed signal over an optical fiber coupled at an output thereof. A spare optical transmitter is coupled to an input port of the optical multiplexer and, in response to detecting failure of a failed one of the plurality of primary optical transmitters, is tuned to provide a directly modulated analog optical signal at a spare wavelength that is selected as to be non-uniformly spaced relative to at least some of the non-uniformly spaced apart wavelengths according to tuning data.07-22-2010
20100322619OPTICAL TRANSMISSION APPARATUS AND FAULT DETECTION METHOD - An optical transmission apparatus includes a non-reciprocal device including first to second ports, an optical signal input from the first port being provided to the second port, an optical signal input from the second port being provided to the first port, a dispersion compensator that is coupled to the first port of the non-reciprocal device and that conducts given processing to an optical signal input from the first port of the non-reciprocal device to provide the optical signal subjected to the given processing to the second port of the non-reciprocal device, a first monitor, a second monitor, and a fault determination device that compares a value monitored by the first monitor with a value monitored by the second monitor to determine a connection failure at the first and/or second ports of the non-reciprocal device and/or a connection state of the dispersion compensator.12-23-2010
20110280567IDENTIFYING FAULT LOCATIONS IN A NETWORK - Systems and methods for identifying a fault location in an optical network are disclosed. In accordance with one embodiment of the present disclosure, a method for identifying a fault location in an optical network comprises monitoring, by a network element, an eastward optical path and a westward optical path for faults. The method further comprises transmitting, by the network element, a first data packet along the eastward path and a second data packet along the westward path. The first and second data packets comprise an eastward fault indicator and a westward fault indicator comprising information associated with any eastward or westward faults occurring on the eastward or westward paths. The fault indicators indicate the existence of an eastward or westward fault and the network element that detected the fault.11-17-2011
20120002959TECHNOLOGY FOR FAULT ALLOCATION IN PASSIVE OPTICAL NETWORKS (PON) - A method for allocating faults in a passive optical network (PON) by placing a number of passive unique optical correlators in a number of respective diagnostic points of the PON, each of the passive unique optical correlators being responsive to an optical diagnostic signal by returning a predetermined unique matching signal; by further transmitting the diagnostic optical signal in the PON towards the diagnostic points to receive upstream response signals from the correlators. Upon detecting presence or absence, in the received response signals, of a predetermined unique matching signal expected from a specific optical correlator, judging about a fault in proximity of the respective specific diagnostic point.01-05-2012
20120106948OPTICAL NETWORK IN-BAND CONTROL PLANE SIGNALING, VIRTUALIZED CHANNELS, AND TANDEM CONNECTION MONITORING SYSTEMS AND METHODS - The present disclosure provides improvements with respect to in-band control plane signaling, virtualized channels, and tandem connection monitoring in optical networks utilizing Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Optical Transport Network (OTN), and the like. In an exemplary embodiment, the present disclosure includes an optical network operating a control plane with in-band signaling utilizing SONET/SDH path level overhead. In another exemplary embodiment, the present disclosure includes an optical network operating virtualized SONET/SDH or OTN channels with manually cross-connections at intermediate line terminating elements. In yet another exemplary embodiment, the present disclosure includes a tandem connection monitoring selection method across multiple operator domains.05-03-2012
20120114328Method and System for Tracking Signaling in Automatically Switched Optical Network - The present invention discloses a method and system for tracking signaling in an automatically switched optical network (ASON), wherein the method comprises a step of setting a signaling tracking filtering condition for a corresponding signaling tracking task, and the following steps that: an ASON node collects and reports a received or sent signaling message when there exists a task tracking request; and when the reported signaling message is determined meeting the signaling tracking filtering condition of the current signaling tracking task, the reported signaling message is resolved to obtain the signaling message of the signaling tracking task. The invention realizes a signaling tracking scheme in an ASON and can establish multiple signaling tracking tasks at the same time, as each signaling tracking task can set its own signaling tracking filtering condition; a flexible signaling tracking is achieved. The invention provides a means for resolving a signaling process and locating a fault in a field debugging and a subsequent operation and maintenance, thus improving the efficiency of fault location.05-10-2012
20130022350RFID SYSTEMS AND METHODS FOR OPTICAL FIBER NETWORK DEPLOYMENT AND MAINTENANCE - An optical-fiber-network (OFN) radio-frequency identification (RFID) method for deploying and/or provisioning service and/or locating faults in an OFN. The method includes providing at least one RFID tag on at least one OFN component of a plurality of OFN components that constitute an OFN and writing OFN component data to the at least one RFID tag that relates to at least one property of the OFN component associated with the RFID tag. The RFID tag data is written to and read from the RFID tags using one or more mobile RFID readers. The OFN component data is recorded and stored in an OFN database unit. The plurality of OFN components are deployed and operations of the OFN are provisioned using the OFN component data. The method may also include using the OFN component data and a plurality of locations on a spatial map to locate a fault in the OFN.01-24-2013
20130039644OPTICAL NETWORK APPARATUS - There is provided an optical network apparatus included in an optical network in which alarm information including a type and a position of a generated failure is transferred, the optical network apparatus including: a reception unit configured to detect alarm information from a received signal, generate alarm code information representing content of an alarm from the alarm information, and transmit a signal including the alarm code information; a transfer unit configured to switch and transfer the signal transmitted from the reception unit; and a transmission unit configured to replace the alarm information included in the signal transferred from the transfer unit, based on the alarm code information, setting information of the transmission unit and setting information of the reception unit, and to transmit the signal including the replaced alarm information.02-14-2013
20140133844SEQUENCE-BASED LINK FAULT LOCALIZATION - Methods and apparatus for a network element or server end station to determine an estimated physical location of a fault in a communications link utilized by two network elements. In an embodiment, the first and second network elements generate link failure indications including time values representing when the respective network element detected the fault. In other embodiments, the link failure indications include time values transmitted over the communications link between the first and second network elements. A time distance between these time values is calculated, which is used to calculate the estimated physical location of the fault. In some embodiments, the link failure indications include sequence numbers transmitted or about to be transmitted over the communications link between the network elements. Sequence distances are calculated between the sequence numbers, and are used to calculate the estimated physical location of the fault.05-15-2014
20140169783FAULT LOCALIZATION USING TANDEM CONNECTION MONITORS IN OPTICAL TRANSPORT NETWORK - An Optical Transport Network (OTN) fault localization method, an iterative OTN fault localization method, and an OTN network use OTN tandem connection monitors operating in a “Monitor” mode to provide fault localization. The methods and network use TCMs for fault localization that can be performed manually or automatically to isolate a fault in a multi-domain OTN network to a particular link, switching fabric, or transport function. Additionally, a roles-based assignment scheme is presented for automatically assigning TCM levels between domains and links in multi-domain OTN networks. The fault localization methods enable fault localization in an automated and non-intrusive manner.06-19-2014
20150016816OPTICAL NETWORK COMMUNICATION SYSTEM WITH EMBEDDED OPTICAL TIME DOMAIN REFLECTOMETER AND METHOD OF OPERATION THEREOF - A system and method of operation of an optical network communication system includes: an optical fiber; an optical link attached to the optical fiber; a data transmitter for sending a downstream data message at a downstream data wavelength in the optical link; an optical time domain reflectometry (OTDR) transmitter for sending a OTDR broadcast pattern continuously at an OTDR wavelength different from the downstream data wavelength in the optical link; a broadband photo detector coupled to the optical fiber; and an OTDR receiver for receiving an OTDR reflected response pattern on the broadband photo detector during an open time slot not used for receiving an upstream data message for indicating an optical fault and for calculating an error distance along the optical fiber based on the optical fault.01-15-2015
20160006631Method and apparatus for link check in passive optical network - A method and an apparatus for checking a PON link are provided. The method includes that MEPs are established respectively at the OLT interface of an OLT and the network interfaces of a plurality of gateways to form an access OAM domain; and in the access OAM domain, an Ethernet OAM message is sent between the MEP of the OLT and the MEP of the corresponding gateway to test the continuity of a service link between the OLT interface of the OLT and the corresponding gateway. Thus, the related functions of the ONU are transferred to the OLT, the OLT simulates the UNI of the ONU to enable the Ethernet OAM function and monitors in real time or manually checks the status of the service link from the gateway to the OLT, so that a failure point of an internal service layer of an access node is determined, the cost on the ONU device and the system configuration and administration cost are reduced greatly, and the Ethernet maintenance requirement of an optical access node in the TR101VLAN architecture is met.01-07-2016
20160197672METHOD OF MEASURING OPTICAL RETURN LOSS07-07-2016
20190149229METHOD OF CONTROL FOR THE MAINTENANCE OF THE OPTICAL POWER IN A ROADM NETWORK05-16-2019
20190149230SYSTEM ARCHITECTURE FOR POWER CONTROL IN AN OPTICAL TRANSMISSION LINE05-16-2019
398011000 Repeater 2
20090154919PULSED HIGH LOSS LOOP BACK SIGNALLING SCHEME - An optical transmission system comprises two optical fibbers carrying optical signal traffic between two terminals, and a plurality of optical repeaters coupled to the two fibers each repeater having a permanently connected passive high loss loop back circuit between the two fibers. One terminal includes a transmitter, which launches a pulsed supervisory signal on a dedicated supervisory wavelength into one optical fiber, and a receiver, which detects a portion of the supervisory signal looped back from each repeater in order to identify the existence and location of faults in the transmission system. The pulsed supervisory signal is of sufficiently short duration such that portions of the signal returned from each repeater do not overlap with one another and interference with the counter-propagating traffic is avoided by utilising a dedicated supervisory wavelength. Each return pulse is integrated sequentially by a single detector and processed by heterodyne reception and synchronous demodulation.06-18-2009
20120294605TRANSPONDER, REPEATER, AND TERMINAL EQUIPMENT - A transponder for performing bidirectional conversion between a client-side signal used for communication to a client device and a transmission path-side signal used for communication to a transmission path, the transponder comprising: a client-side interface for inputting/outputting the client-side signal; a transmission path-side interface for inputting/outputting the transmission path-side signal; a connection determining unit for determining which of the another client-side interface and the client device is coupled to the client-side interface; and a transmission signal generating unit for outputting, in a case where a state signal indicating a state on a transmission path side is input to the transmission path-side interface, a transmission signal indicating that the state signal has been input, from the client-side interface, wherein: the transmission signal generating unit changes a form of the transmission signal to be output from the client-side interface, based on a determination result obtained by the connection determining unit.11-22-2012
398012000 Switch 8
20090285575Method for isolating layer 1 problems for digital signal circuits embedded in SONET - A method is disclosed that integrates performance monitoring data and alarms reported by Layer 3 network elements with alarms and performance monitoring data reported by Layer 1 SONET/SDH network elements to isolate Layer 1 problems on DSX circuits embedded in SONET due to hard failures or errors.11-19-2009
20100316372SIGNAL SWITCHING MODULE FOR OPTICAL NETWORK MONITORING AND FAULT LOCATING - The present invention provides an optical signal-selection switch module which is used in a method for simultaneous real-time status monitoring and troubleshooting of a high-capacity single-fiber hybrid passive optical network that is based on wavelength-division-multiplexing techniques.12-16-2010
20100316373BIDIRECTIONAL MULTI-WAVELENGTH OPTICAL SIGNAL ROUTING AND AMPLIFICATION MODULE - The present invention provides a bidirectional optical signal traffic-directing and amplification module which is used in a method for simultaneous real-time status monitoring and troubleshooting of a high-capacity single-fiber hybrid passive optical network that is based on wavelength-division-multiplexing techniques.12-16-2010
20110255860FAULT LOCALIZATION METHOD AND A FAULT LOCALIZATION APPARATUS IN A PASSIVE OPTICAL NETWORK AND A PASSIVE OPTICAL NETWORK HAVING THE SAME - The present invention discloses a fault localization method and a fault localization apparatus in a Passive Optical Network (PON) and a passive optical network having the same.10-20-2011
20120163800Optical Time Domain Reflectometry (OTDR) Trace Analysis in PON Systems - A client unit and a method are provided performing fault analysis in a Passive Optical Network, PON, by using Optical Time Domain Reflectometry, OTDR. The method comprises triggering a new OTDR measurement, wherein a previous reference measurement has been made indicating an original state of the PON. The method further comprises inserting an OTDR measurement signal into a multistage splitter before a last splitter stage of the multistage splitter, and wherein the last splitter stage is of ratio 2:N; and obtaining at least one new event location based on the OTDR measurement signal. Further, the method comprises calculating a fault magnitude at a given location by subtracting an event magnitude obtained from the new OTDR measurement from the reference OTDR measurement and taking into account the number of drop links connected to the last splitter stage in the reference measurement and the new measurement. Thereby, determination of position and severity of the fault locations is enabled.06-28-2012
20140133845TIME-BASED LINK FAULT LOCALIZATION - Methods and apparatus for a network element or server end station to determine an estimated physical location of a fault in a communications link utilized by two network elements. In an embodiment, the first and second network elements generate link failure indications including time values representing when the respective network element detected the fault. In other embodiments, the link failure indications include time values transmitted over the communications link between the first and second network elements. A time distance between these time values is calculated, which is used to calculate the estimated physical location of the fault. In some embodiments, the link failure indications include sequence numbers transmitted or about to be transmitted over the communications link between the network elements. Sequence distances are calculated between the sequence numbers, and are used to calculate the estimated physical location of the fault.05-15-2014
20150365741TRANSMISSION APPARATUS AND TRANSMISSION METHOD - A transmission apparatus includes: a first input-output unit; a second input-output unit; a third input-output unit located in a first direction that is a transmission direction from the first input output unit and the second input-output unit; and a switch coupled to the first input-output unit, the second input-output unit, and the third input-output unit, wherein the first input-output unit requests the third input-output unit via the switch to notify in a second direction opposite to the first direction of a defect upon detecting the defect, wherein the third input-output unit transmits defect information indicating the defect to one of the first input-output unit and the second input-output unit via the switch in response to a requesting from the first input-output unit.12-17-2015
20160028476OPTICAL TEST DEVICE AND SYSTEMS - Systems, methods, and devices are disclosed for monitoring optical communications between a managed location and a remote location. In particular, an optical signal is transmitted over an optical fiber and passed-through a test device. A portion of the optical signal is filtered from the original optical signal and passed to a monitoring unit. The monitoring unit may instruct one or more switches in the test device to loop the optical signal back toward the managed location. Subsequently, testing and monitoring may be performed at the managed location. The device may provide a test output or may transmit the information to the managed location.01-28-2016
398013000 Fiber or waveguide 31
20080232795Method And System For Localizing An Attenuation Change Location In An Optical Waveguide - The invention provides a method and a system for localizing an attenuation change location in an optical waveguide, wherein the attenuation change location can be determined depending on a time difference (ΔT) between signal power change instants of optical signals having different wavelengths (λ09-25-2008
20080304823Methods, Systems, and Computer-Readable Media for Determining Physical Layer Failures - Methods, systems, and computer-readable media provide for notifying for determining a location of a fiber cut. According to embodiments, a method for determining a location of a fiber cut in a passive optical network (PON) including a plurality of optical network terminations (ONTs) is provided. According to the method, a plurality of base signatures are generated prior to the fiber cut. Each of the base signatures correspond to a known configuration of the plurality of ONTs. In response to the fiber cut, a current signature corresponding to a current configuration of the plurality of ONTs is generated. Whether the current signature matches one of the base signatures is determined. In response to finding a matching base signature, the location of the fiber cut is determined based on the known configuration of the plurality of ONTs corresponding to the matching base signature.12-11-2008
20080310837Passive Optical Test Termination - An optical test termination device (12-18-2008
20080317462OPTICAL FIBER LINK MONITORING METHOD AND APPARATUS FOR PASSIVE OPTICAL NETWORK - The present invention provides an optical link monitoring method for the passive optical network. The method includes the steps of: determining a plurality of groups such that each group includes portion of a plurality of optical network units; connecting each of the plurality of groups to an optical splitter through an optical fiber link; determining status of the optical fiber links among an optical line terminal, the optical splitter and the plurality of groups according to the upstream optical signals or optical energy accepted by the optical line terminal. The present invention also provides an apparatus and a system to implement the method.12-25-2008
20090092388METHOD, OPTICAL NETWORK AND NETWORK DEVICE FOR LOCATING FIBER EVENTS - A method for locating fiber events and an optical network and network device are provided. The method for locating fiber events includes: determining the distance between an event and an OLT, measuring the optical loss of the optical channel between the OLT and an ONU or ONT at the peer end of the measured fiber link, and, according to the measured optical loss of the optical channel, judging whether the event occurs on the measured fiber link, and if so, determining the location of the event on the measured fiber link according to the distance between the event and the OLT.04-09-2009
20090190921OPTICAL LINE MONITORING APPARATUS AND OPTICAL LINE MONITORING METHOD - An optical line monitoring apparatus, including: a group information recording portion which records group information about to which splitter respective terminators are connected; a normal information recording portion which records intensities of reflected lights from a plurality of terminators in a state in which a failure is not occurring in optical lines; a monitored information recording portion which records intensities of reflected lights from the plurality of terminators in failure monitoring time; an attenuation amount determination portion which determines a terminator the reflected light intensity of which is attenuated compared with the corresponding reflected light intensity in normal information; and a control portion which determines, if the intensities of the reflected lights of all the terminators connected to the same splitter are attenuated by the same value, that a failure has occurred between the test apparatus and the splitter to which all the terminators are connected.07-30-2009
20100150547FAULT LOCATOR FOR LONG HAUL TRANSMISSION SYSTEM - A system and methods include generating an optical time domain reflectrometry signal; transmitting the optical time domain reflectrometry signal on a first fiber path in a first direction through at least one optical amplifier; receiving a reflection of the optical time domain reflectrometry signal on the first fiber path in a second direction opposite the first direction; transmitting the reflected optical time domain reflectrometry signal on a second fiber path in the second direction, where the second fiber path is not the first fiber path; and determining a location of a fault on the first fiber path based on the reflected optical time domain reflectrometry signal.06-17-2010
20110217036FIBRE MONITORING IN OPTICAL NETWORKS - A method of monitoring (09-08-2011
20110280568TECHNIQUES FOR DETECTING OPTICAL FAULTS IN PASSIVE OPTICAL NETWORKS - A method for detecting faults and their locations in an optical path between an optical line terminal (OLT) of and optical network units (ONUs) of a passive optical network (PON). The method comprises forming a maintenance optical link through the PON between the OLT and a collocated ONU, the OLT and its collocated ONU are each connected to an optical splitter; sending a ranging request from the OLT to the collocated ONU; in response to the ranging request, receiving, over the maintenance optical line, a ranging burst signal including at least a fault analysis detection pattern (FADP); and analyzing the FADP in the received signal by auto-correlating the FADP signal with an expected FADP signal, an uncorrelated event measured through the auto-correlation is indicative of a fault in the optical path of the PON and occurrence times of such events are indicative of the fault's location in the optical path.11-17-2011
20110311218OPTICAL LINE MONITORING APPARATUS AND OPTICAL LINE MONITORING METHOD - An optical line monitoring apparatus, including: a group information recording portion which records group information about to which splitter respective terminators are connected; a normal information recording portion which records intensities of reflected lights from a plurality of terminators in a state in which a failure is not occurring in optical lines; a monitored information recording portion which records intensities of reflected lights from the plurality of terminators in failure monitoring time; an attenuation amount determination portion which determines a terminator the reflected light intensity of which is attenuated compared with the corresponding reflected light intensity in normal information; and a control portion which determines, if the intensities of the reflected lights of all the terminators connected to the same splitter are attenuated by the same value, that a failure has occurred between the test apparatus and the splitter to which all the terminators are connected.12-22-2011
20110311219Method and Apparatus for Coupling Optical Signal with Packaged Circuits Via Optical Cables and Lightguide Couplers - Method and apparatus for coupling electrical and communication circuits, included in a packaged semiconductor comprising photo receivers, photo transmitters and photovoltaic cells, through lightguide and optical fiber cables. The packaged semiconductor combinations comprise one, two or plurality of photo elements for a single or plurality one way optical signal, receive or transmit, and a single or plurality of two way optical signal communications via direct optical links and via optical prisms, filters, half mirrors and lenses. The packaged semiconductor includes at least one optical access to a single or plurality of lightguides or optical fiber with single core and for multicore lightguides. A built-in or attachable holders are used for attaching the different lightguide cables to the one or plurality of optical accesses with the attached cable end is terminated by cutting, trimming and shaping. The packaged circuit comprising electrical switches, current sensors, basic elements such as diodes, transistors and FETs, switches and power switches and different basic electrical circuit and communication, distribution circuits including CPU, DSP and complex semiconductor circuits, as used for communicating within limited short distances through optical network of lightguides and fiber optical cables. A packaged semiconductor of an SPDT power switch circuit is integrated with an SPDT manually activated switch, for providing dual switching for lights and other electrical appliances, via manual action and remotely via the lightguide or the optical fiber.12-22-2011
20120027402In-Band Optical Frequency Division Reflectometry - An apparatus comprising an optical transmitter coupled to an optical fiber, and an optical receiver coupled to the optical fiber, wherein the transmitter is configured to transmit a test signal data pattern and user data into the optical fiber, and wherein the receiver is configured to receive a reflection of the test signal data pattern. Also disclosed is a network component comprising a processor configured to implement a method comprising promoting the transmission of an optical test signal data pattern into an optical fiber, wherein the test signal data pattern creates a radio frequency (RF) tone, and detecting a reflection of the RF tone in the optical fiber.02-02-2012
20120039598Method and Apparatus for Fault Discovery in a Passive Optical Network (PON) - An apparatus and method for fault indication and localization in a Passive Optical Network (PON) comprising a multistage power splitter (02-16-2012
20120070146Monitoring Node and Reflector Node of an Optical Communication Network, Optical Communication Network, and Method for Operating an Optical Communication Network - The invention refers to a optical communication network comprising a monitoring node having a port for outputting at least one optical signal that has a first wavelength range over an optical link of the network to a reflector node of the network. In order to allow for efficient monitoring the optical link it is suggested that the reflector node comprises a wavelength selective optical reflector connected to the link, the reflector being configured for generating a monitoring signal by reflecting a part of the optical signal back into the link, the monitoring signal having a second wavelength range that is a proper sub-range of the first wavelength range and the monitoring node comprises a detector coupled with the port for determining whether the link is defective arranged for detecting the monitoring signal generated by the reflector node.03-22-2012
20120224846Fault Localization and Fiber Security in Optical Transponders - Designs, methods, and applications for fault localization and fiber security in optical transponders is described. In one embodiment a two-way time transfer protocol or other suitable method for synchronizing clocks between distant transponders is used. The clock synchronized transponders have digital signal processing to continually detect high precision time-histories of physical layer attributes in the transmission between the two transponders. Physical layer attributes can include: state-of-polarization changes, changes in polarization-mode-dispersion, change in propagation delay, changes or loss-of-light, changes in OSNR, changes in BER between the two nodes. By recording these physical layer changes and time-stamping them information on the magnitude and estimated location of the changes can be inferred by from the time records. In one aspect the method may be used in a distributed optical sensor for monitoring trespassing events that are a risk to fiber security of an optical transmission link.09-06-2012
20120308225Method for Establishing an Inter-Domain Path that Satisfies Wavelength Continuity Constraint - The present invention provides a method for establishing an inter-domain path that satisfies wavelength continuity constraint. The fPCE stores a virtual topology comprised by border nodes of all domains. The present invention uses parallel inter-domain path establishment method to decrease the influence from WCC. Compared with the sequential process way in prior art, it enhanced the resource utilization and decreased computation delay.12-06-2012
20130034349DUST CAP FOR FIBER OPTIC CABLE OR ADAPTER - A dust cap adapted to fit over a fiber optic adapter. The dust cap includes a dust cap body having a light-entering end and an opposite indicating end. The dust cap body is shaped such that the light-entering end has an interference fit with the fiber optic adapter. A first gap-creating projection extends from the light-entering end, and a second gap-creating projection extends from the light-entering end. The dust cap also includes a light pipe running along a longitudinal axis of the dust cap body from just beyond the light-entering end to just beyond the indicating end.02-07-2013
20130114954Method for Generating a Probe Pulse and Coherent Optical Time Domain Reflectometer - The present invention relates to the field of communication transmission, and in particular, to a method for generating a probe pulse and a coherent optical time domain reflectometer. The coherent optical time domain reflectometer includes: a control unit, configured to generate a first pulse signal and a second pulse signal which have a same period T, where the second pulse signal lags behind the first pulse signal, and T satisfies T≧t+2L/C; a driving unit, configured to generate a frequency change driving signal according to the first pulse signal; a continuous light laser device, configured to generate, as driven by the frequency change driving signal, continuous light having a changing frequency and an unchanging frequency spectrum width; and a probe pulse generating unit, configured to modulate the continuous light according to the second pulse signal to generate a probe pulse.05-09-2013
20130148957FIBER OPTIC TELECOMMUNICATIONS CARD WITH SECURITY DETECTION - A transceiver card for a telecommunications box for transmitting data over a first optical fiber and receiving data over a second optical fiber. The card has transmitter for transmitting data over the first optical fiber, the transmitter having a laser and a modulator, a fiber output optically connected to the laser for connecting the first optical fiber to the card, a fiber input for connecting the second optical fiber to the card, a receiver optically connected to the fiber input for receiving data from the second optical fiber, and an OTDR optically connected between the transmitter and the fiber output or between the receiver and the fiber input. An energy level detector is also provided between the receiver and the fiber input.06-13-2013
20130148958Method and Optical Line Terminal for Optical Fiber Fault Diagnosis in Passive Optical Network - A method for performing optical fiber fault diagnosis in a passive optical network is disclosed in the present invention. The method includes: after receiving an optical fiber fault diagnosis message, a receiving module of an optical line terminal triggering a test module (S06-13-2013
20130188947APPARATUS AND METHOD FOR MONITORING OPTICAL LINE - An apparatus and method for monitoring an optical line is provided. The optical line monitoring apparatus may include a comparison unit to extract first identification information about an optical network terminal (ONT) from reflected data that is reflected and received from the optical line, and to compare the extracted first identification information to predetermined second identification information about the ONT, and a processor to analyze a state of the optical line using the reflected data when the first identification information is identical to the second identification information.07-25-2013
20130202287CORRELATION SYSTEMS AND METHODS WITH ERROR COMPENSATION - A correlation system, such as a correlation optical time domain reflectometer (OTDR) system, transmits a correlation sequence, such as an M-sequence, and measures the returns of the correlation sequence over time. The system correlates the transmitted sequence with the returns to provide correlation measurement values that respectively correspond to different distances from the point of transmission. A correlation error compensation element estimates a correlation error floor based on at least one correlation measurement value corresponding to a point along the fiber beyond a finite impulse response (FIR) length from the transmitter. The correlation error compensation element adjusts each correlation measurement value estimate in order to cancel the contribution of the correlation error floor from the measurements to provide compensated measurement values that are substantially free of the effects of the correlation error floor.08-08-2013
20130223838TRANSMITTING APPARATUS AND TRANSMITTING METHOD - A transmitting apparatus connected via an optical branching apparatus to an optical communication device group includes a control unit that for each periodic transmission period including a first transmission period with a test period in which the optical communication device group is not allowed to transmit optical signals and a second transmission period without the test period, allows the optical communication device group to transmit the optical signals during a period different from the test period; a test light sending unit that sends test light to the optical branching apparatus during the test period; a light receiving unit that receives optical signals transmitted from the optical communication device group, and reflected light of the sent test light; a measuring unit that measures intensity of the reflected light received at different elapsed times after the test light is sent; and an output unit that outputs information based on the measured intensity.08-29-2013
20140003804Use of Dying Gasp to Locate Faults in Communications Networks01-02-2014
20140029932STOCHASTIC REFLECTOMETER - Disclosed herein are various embodiments of a time-domain reflectometer having a transmitter configured to apply, to a system under test (SUT), an intensity-modulated probe signal generated based on a periodic pseudo-random bit sequence. The reflectometer further has a receiver configured to receive, back from the SUT, a reflected signal corresponding to the probe signal. The receiver converts the received reflected signal into a binary bit sequence using a relatively simple slicer circuit, and without the use of complex analog circuits and/or multi-bit analog-to-digital converters. The binary bit sequence is then compared with the original pseudo-random bit sequence to obtain a measure of the impulse response of the SUT. In some embodiments, the reflectometer has a controllable noise generator that can be used, e.g., to optimize the obtained measure for the detection of multiple SUT defects having significantly differing reflection characteristics.01-30-2014
20140126900OTDR TRACE ANALYSIS IN PON SYSTEMS - Fault analysis of a Passive Optical Network comprising Optical Network Terminal(s) uses Optical Time Domain Reflectometry (OTDR). An OTDR measurement signal is supplied to a multistage splitter having a ratio 2:N05-08-2014
20140212130METHODS AND APPARATUSES FOR SUPERVISION OF OPTICAL NETWORKS - Methods and apparatuses for enabling supervision of fibres in an optical communication network, where a Central Office provides data signals to a Remote Node for distribution to Optical Network Terminals ONTs. The Central Office generates and sends test signals of different monitoring wavelengths associated to predefined groups of said ONTs, to the Remote Node. The Remote Node routes each test signal to a corresponding associated group of ONTs according to the wavelength of the test signal. When receiving a back-scattered and back-reflected test signal caused by a faulty optical fibre, the Central Office is able to identify the faulty optical fibre based on the wavelength of the back-scattered and back-reflected signal.07-31-2014
20140376905FIBER LENGTH MEASUREMENT SYSTEM - A system for measuring a length of one or more spans between a first optical transceiver and a second optical transceiver in a fiber-optic network, which can determine, at a processor associated with the first optical transceiver, a round-trip time of an optical signal communicated from the first optical transceiver to the second optical transceiver and back to the first optical transceiver. The system can also determine, at the processor, a half-round-trip time by dividing the round-trip time by two. The system can also determine, at the processor, a distance between the first and the second optical transceivers by multiplying the speed of light by the half-round-trip time.12-25-2014
20150117852Use of Dying Gasp to Locate Faults in Communications Networks - Novel tools and techniques that can be used to detect network impairment, including but not limited to impairment of optical fiber networks. In an aspect, such tools and techniques can be deployed at relatively low cost, allowing pervasive deployment throughout a network. In another aspect, such tools and techniques can take advantage of a “dying gasp,” in which a network element detects a sudden drop in received optical (or electrical) power, resolution, etc. at short time scales and sends a notification across the network before the connection is completely compromised. In yet another aspect, some tools can include a supervisory function to analyze aspects of the dying gasp with the goal to determine network segments associated with an impairment and an estimate of the location of an impairment within the network.04-30-2015
20150311974MICROREFLECTION DELAY ESTIMATION IN A CATV NETWORK - Systems and methods of estimating a distance to a cause of a micro-reflection in a CATV network.10-29-2015
20160112120Use of Dying Gasp to Locate Faults in Communications Networks - Novel tools and techniques that can be used to detect network impairment, including but not limited to impairment of optical fiber networks. In an aspect, such tools and techniques can be deployed at relatively low cost, allowing pervasive deployment throughout a network. In another aspect, such tools and techniques can take advantage of a “dying gasp,” in which a network element detects a sudden drop in received optical (or electrical) power, resolution, etc. at short time scales and sends a notification across the network before the connection is completely compromised. In yet another aspect, some tools can include a supervisory function to analyze aspects of the dying gasp with the goal to determine network segments associated with an impairment and an estimate of the location of an impairment within the network.04-21-2016
398014000 WDM 8
20090080880Apparatus for Monitoring Failure Positions in Wavelength Division Multiplexing-Passive Optical Networks and Wavelength Division Multiplexing-Passive Optical Network Systems Having the Apparatus - Disclosed is an apparatus for monitoring failure positions on fibers in a WDM-PON system and a WDM-PON system having the apparatus.03-26-2009
20090169201OPTICAL TRANSMISSION APPARATUS - An optical transmission apparatus includes a network, a plurality of transponders, a monitor, a multiplexer, and demultiplexer. The plurality of transponders connected with the network, each of the plurality of transponders having a response transfer processing unit for communicating between the other transponders via the network, the plurality of transponders categorized a first transponder and a second transponder; The monitor connected with each of the transponder units, respectively, the monitor monitoring the plurality of transponders and sending a first request and a second request to the plurality of transponders. The first transponder responds an answer to the monitor via the network when the first transponder receives the first request. The second transponder responds an answer to the monitor instead of the first transponder via the network when the first transponder receives the second request.07-02-2009
20110243552OPTICAL AUTODISCOVERY FOR AUTOMATED LOGICAL AND PHYSICAL CONNECTIVITY CHECK BETWEEN OPTICAL MODULES - Optical autodiscovery is provide between two optical modules to insure that when an optical signal is coupled between the two optical module, the optical signal from a first module does not interfere with operation of a second module. The autodiscovery is implemented by sending an optical identification signal from the first optical module via the coupling to the second optical module from which signal, the second optical module can verify and determined acceptance of the coupled first optical module. During this autodiscovery process, the optical identification signal from the first optical module may be attenuated or shifted in optical spectrum so as not to interfere with the operation of the second optical module. Autodiscovery may also be employed in cases where a first optical module is to receive an optical signal from a second module.10-06-2011
20130039645Tunable Coherent Optical Time Division Reflectometry - An apparatus comprising an optical transmitter, a coarse tuner coupled to the optical transmitter and having a first tuning range, a fine tuner coupled to the optical transmitter and having a second tuning range smaller than and within the first tuning range, a wavelength division demultiplexer coupled to the optical transmitter and to a plurality of optical fibers, and a detector coupled to the optical transmitter and the wavelength division demultiplexer.02-14-2013
20140050472MOBILE TERMINAL FOR SERVICING A TELECOMMUNICATION SYSTEM - The invention pertains to a mobile terminal for servicing a telecommunication system, wherein the telecommunication system comprises a system controller and at least one module and/or at least one interface port (that is externally accessible in the inserted state of the module), wherein the mobile terminal features an identification device in order to identify a module or an interface port. The invention further pertains to a utilization of such a mobile terminal, as well as an arrangement consisting of a telecommunication system and such a mobile terminal.02-20-2014
20140112655CONTROLLER, A COMMUNICATION SYSTEM, A COMMUNICATION METHOD, AND A STORAGE MEDIUM FOR STORING A COMMUNICATION PROGRAM - [Technical Problem]04-24-2014
20150139637MONITORING OF A PASSIVE OPTICAL NETWORK (PON) - A Passive Optical Network, PON, comprising an Optical Line Termination, OLT, connected to one or more Optical Network Terminals, ONT, over an Optical Distribution Network, ODN, is monitored by a monitoring device. The monitoring device comprises an Optical Frequency Domain Reflectometer, OFDR, and is arranged to monitor the optical power received by the OLT and the ONTs of the PON, and to perform transceiver analysis of the OLT and the ONTs, combined with an OFDR analysis of the ODN, based on the monitored optical power violating a threshold.05-21-2015
201901492601+1 ETHERNET FABRIC PROTECTION IN A DISAGGREGATED OPTICAL TRANSPORT NETWORK SWITCHING SYSTEM05-16-2019
398015000 Stop transmission or reduce power 5
20100316374Networked mapping function - A fiber to copper patch terminal includes selectively activated circuitry for controlling an associated transceiver to produce a condition where normal communication with a connected power patch panel module has been temporarily interrupted. The patch terminal includes a selectively activated location identification function. This function when activated causes the optical transceiver to transmit a location signal preferably during a period where communication is awaiting resetting. In a preferred embodiment the patch terminal is designed to transmit the location signal during a period where Ethernet communication as awaiting completion of a reset.12-16-2010
20110044685Optical network unit having automatic shutdown - An optical network unit useful in a passive optical network has capability for automatic shutdown upon detection of a malfunction, thereby protecting the integrity of upstream data transmitted in the network. The unit detects the generation of upstream light during intervals in which transmission is not authorized. In response, the light source of the unit is deactivated to prevent collisions with upstream data from other optical network units in the network.02-24-2011
20110135298OPTICAL SIGNAL SHUTOFF MECHANISM AND ASSOCIATED SYSTEM - A mechanism for adjusting or shutting off an optical signal within a network system is provided. The system may include a generating element for providing an optical signal and a bi-directional coupler for transmitting the optical signal to downstream components and fiber links and for transmitting a reflected optical signal based on the reflection characteristics of the downstream components to a converter element. The converter element converts the reflected optical signal to an electrical trigger signal that is used by a processing element to monitor the degradation or operational conditions within the network system. Based on the electrical trigger signal the processing element may adjust or shut off the optical signal at the generating element or at another element within the network system or another network system. The processing element may also send a communication signal to other elements or an operator to indicate unacceptable noise within the network system.06-09-2011
20120315032EYE SAFETY MECHANISM FOR USE IN OPTICAL CABLE WITH ELECTRICAL INTERFACES - An eye safety mechanism for use with a bi-directional data cable having an electrical interface at at least one (but potentially both) ends, despite the fact that the cable communicates over much of its length using a bi-directional optical channel. Upon power-up, the eye safety mechanism determines whether or not a loss of signal condition is present on an optical receive channel of the bi-directional data cable. If the loss of signal is present, the mechanism intermittently disables the optical transmit channel of the bi-directional data cable. On the other hand, if the loss of signal is not present, the mechanism enables the optical transmit channel of the bi-directional data cable without intermittently disabling transmission at least for most of the time until the next time a loss of signal is detected on the optical receive channel.12-13-2012
20130202288OPTICAL SIGNAL CONTROL METHOD, OPTICAL SIGNAL CONTROL SYSTEM AND OPTICAL BACKPLANE SYSTEM - The present invention provides an optical signal control method, an optical signal control system and an optical backplane system, which belongs to the field of optical communications technologies. The method includes: detecting whether a circuit board is pulled out from an optical backplane; if the circuit board is pulled out, querying a transmitting port of another circuit board connected to a slot where the pulled out circuit board is located, transmitting a first control instruction to the transmitting port, and notifying of closing the transmitting port or adjusting output power of the transmitting port to make it below a preset threshold. The optical signal control system includes: a detection module and a control module. The optical backplane system includes the optical signal control system.08-08-2013

Patent applications in class Fault location

Patent applications in all subclasses Fault location

Website © 2025 Advameg, Inc.