Class / Patent application number | Description | Number of patent applications / Date published |
385113000 | With strength member | 75 |
20080205832 | Fiber optic cable comprising improved filling material and method of fabrication - A fiber optic cable can comprise small spheres or balls disposed in the cable's interstitial spaces, for example between the cable's optical fibers and a surrounding buffer tube. The spheres can comprise foam rubber, closed-cell or open-cell porous polymer, or some other soft material. Typical diameters for the spheres can be in a range of 1 to 2.5 millimeters. A soft composition of the spheres can cushion the optical fibers and physically impede water ingress into the cable. Additional fiber protection can arise from the ability of the loose spheres to rotate individually, in a ball-bearing effect. Thus, sphere-to-sphere motion can absorb physical stresses associated with bending, twisting, bumping, and stretching the cable during installation, thereby shielding the fibers from damage. | 08-28-2008 |
20080247717 | Highly flexible water-proof, rodent-proof cables particulary useful as optical communication cables - A highly flexible water-proof, rodent-proof cable, comprising an optically or electrically conductive center region, a layer of a yarn of high tensile strength and water blocking properties overlying the center region, a layer of soft annealed steel wires in the form of a braid overlying the yarn layer, and an outer jacket of a polymeric material overlying the steel-wire layer. | 10-09-2008 |
20080247718 | FIBER OPTIC CABLE SYSTEMS AND METHODS TO PREVENT HYDROGEN INGRESS - Purging interior regions of a cable reduces or prevents hydrogen darkening of an optical fiber located in the cable. While hydrogen may permeate through an outer surface of the cable, fluid circulating through the cable purges the hydrogen from within the cable. This circulation of the fluid occurs between an inner tube containing the fiber and an outer tube surrounding the inner tube. | 10-09-2008 |
20080279514 | Optical cable and method of manufacturing an optical cable - An optical cable comprises a buffered optical fiber which is arranged within a buffer tube. The buffer tube is extruded around the buffered optical fiber such that a small gap, preferably in a range between about 40 μm and about 100 μm, is formed between the buffered optical fiber and the buffer tube. A layer of strength member elements is disposed around the buffer tube. A cable jacket is extruded around the strength member elements wherein the strength member elements are bonded to the cable jacket. | 11-13-2008 |
20080292254 | Low Shrink Telecommunications Cable and Methods for Manufacturing the Same - The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage. | 11-27-2008 |
20080310802 | Low Cost, High Performance Flexible Reinforcement for Communications Cable - A low cost, high performance flexible reinforcement member that can be used for both optical and copper communications cable. The reinforcement members made according to the preferred process are more rigid than known reinforcement members, but are less rigid than glass pultruded rods. Communications cables utilizing these members are lightweight and exhibit an improved combination of strength and flexibility compared to traditional communications cables. Further, these communication cables may then be installed into underground ducts using more economical and faster installation techniques. | 12-18-2008 |
20090003780 | OPTICAL FIBER ASSEMBLIES HAVING RELATIVELY LOW-LEVELS OF WATER-SWELLABLE POWDER AND METHODS THEREFOR - Disclosed are fiber optic assemblies having at least one optical fiber and a water-swellable powder within a tube and/or cavity and methods for making the same. Fiber optic assemblies of the present invention use relatively low-levels of water-swellable powder while still effectively blocking the migration of tap water and/or saline solutions of 3% by weight along the tube and/or cavity. Furthermore, cleaning of the optical fibers is not necessary before connectorization like with conventional fiber optic cables that use a gel or grease. Generally speaking, at least some of the water-swellable powder is transferred to the inside surface of the tube, cavity, optical fiber or the like; rather, than being a loose powder that is able to migrate within the tube or cavity. Moreover, the existence of water-swellable powder within the fiber optic assembly or cable is nearly transparent to the craft since relatively low-levels are possible. | 01-01-2009 |
20090003781 | Optical Fiber Cable Having A Deformable Coupling Element - Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement. | 01-01-2009 |
20090022459 | Fiber optic cable breakout configuration with retention block - A telecommunications cable includes a distribution cable, a tether that branches from the distribution cable, and a tether retention block affixed to the distribution cable. The tether retention block includes a first portion and a second portion that is configured to cooperate with the first portion to secure a tether buffer tube and a strength member of the tether. Each of the first and second portions defines at least a first half-channel configured to cooperate with the first half-channel of the other portion to receive the strength member of the tether. | 01-22-2009 |
20090034922 | OPTICAL FIBER CABLE - It is an object of the present invention to provide an optical fiber cable which can reliably prevent increased transmission loss due to damage of the optical fiber as a result of the egg-laying behavior of cicadas. The cable includes at least an optical fiber | 02-05-2009 |
20090034923 | Fiber Optic Cables Suitable for Automated Preconnectorization - Fiber optic drop cables are disclosed that are suitable for automated preconnectorization. In one embodiment, an optical waveguide is disposed in a buffer tube that has two strength components disposed on opposite sides thereof and a plurality of strength members. The plurality of strength members are disposed at a plurality respective interstices located between the buffer tube and the two strength components and shaped into a plurality of substantially triangular shapes for improving the balancing of the residual stresses in the fiber optic cable caused by the shrinkage of a cable jacket during cooling. In another embodiment, a fiber optic cable includes a tonable lobe connected by a web that is frangible and the web includes predetermined ratios for easily and reliable separation of the tonable lobe. | 02-05-2009 |
20090046983 | Enhanced Fiber Optic Seismic Land Cable - A fiber optic cable comprises a cable core comprising at least one optical fiber and one of at least one electrical conductor and at least one strength member disposed adjacent the at least one optical fiber, at least one polymeric inner layer enclosing the cable core, and at least one polymeric outer layer enclosing the cable core and the inner layer to form the fiber optic cable, the outer layer operable to maintain integrity of the cable within a predetermined temperature range. | 02-19-2009 |
20090074367 | BUOYANCY NEUTRAL FIBER OPTIC CABLE - A robust fiber optic cable is well suited for harsh environments, such as undersea environments, as a communication link to a mobile undersea vehicle. In preferred embodiments, the fiber optic cable is constructed to have neutral buoyancy in salt water. The fiber optic cable may include one single mode optical fiber. A suspension fluid, such as light mineral oil surrounds the optical fiber. In an optional embodiment, a plurality of strength members also surrounds the optical fiber and these elements are surrounded by an outer jacket. In another optional embodiment, the optical fiber and suspension fluid may be loosely surrounded by an inner containment tube, a plurality of strength members surrounds the inner containment tube, and these elements are surrounded by an outer jacket, which may be bonded to the inner containment tube. | 03-19-2009 |
20090087153 | Optical Fiber Microcable with Multilayer Protective Sheath - Disclosed is a central loose tube fiber optic microcable that includes a protective sheath enclosing a plurality of optical fibers. The microcable protective sheath is composed of two layers of different synthetic materials, namely an inner layer having an elasticity modulus of about 1500-3000 MPa and an outer layer having an elasticity modulus of about 600-1200 MPa. | 04-02-2009 |
20090087154 | Optical fiber cables - Described are new cable designs for indoor installations wherein the cable comprises a dual-layer optical fiber buffer encasement of acrylate resin. The buffer encasement has an acrylate compliant inner layer that protects the fiber and minimizes stress transfer to the fiber; and a hard, tough acrylate outer layer that provides crush resistance. The dual-layer optical fiber buffer encasement is wrapped with reinforcing yarn and encased in an outer protective jacket. A dual jacket embodiment adapted for indoor/outdoor installations is also described. | 04-02-2009 |
20090324183 | Dry Fiber Optic Cables and Assemblies - A fiber optic cable includes at least one optical fiber, at least one strength member, at least one dry insert, and a cable jacket. The cable jacket has a cavity with a generally rectangular cross-section with the at least one optical fiber and the at least one dry insert disposed therein. The at least one optical fiber has a predetermined level of coupling to the cable jacket that is provided by the at least one dry insert within the cavity of cable jacket. The predetermined level of coupling is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable. Additionally, fiber optic cables of the present invention are also suitable as a portion of a cable assembly. | 12-31-2009 |
20100054678 | FIBER OPTIC FURCATION METHOD - A fiber optic furcation method for fiber optic cables having a plurality of optical fibers and a fiber optic junction made by said method. The method comprises the steps of threading each optical fiber into a separate fiber optic cable forming a junction; placing a first tube around the junction so that the tube covers the reinforcing members of the fiber optic cables; folding reinforcing fibers from the fiber optic cables over the first tube; applying an adhesive to the reinforcing fibers; placing a second tube around the junction; and shrink wrapping the junction. | 03-04-2010 |
20100054679 | Fiber optic cable assembly with floating tap - A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member. A bonding structure bonds the cable fiber assembly, buffer conduit and movable member so that the cable fiber assembly can translate but not rotate relative to the cable within the NAP. This allows the tap point to “float” within the NAP when the cable fiber assembly needs to translate within the cable. | 03-04-2010 |
20100067857 | High-Fiber-Density Optical Fiber Cable - Disclosed is a fiber-optic cable that possesses a high cable filling coefficient (and/or a high cable fiber density) yet ensures that its enclosed optical fibers demonstrate improved attenuation performance when subjected to temperature variations between about −40° C. and 70° C. The fiber-optic cable is suitable for efficient installation into ducts, such as via blowing. | 03-18-2010 |
20100158457 | RUGGEDIZED, LIGHTWEIGHT, AND COMPACT FIBER OPTIC CABLE - A fiber optic cable is described. The fiber optic cable includes optical fibers, a matrix substantially encasing the optical fibers, a tape substantially around the matrix, a tube substantially around the tape, a strength member around the tube, and a jacket substantially on an outer periphery of the fiber optic cable. | 06-24-2010 |
20100166375 | Perforated Water-Blocking Element - The present invention provides optical-fiber communication cables with an improved water-blocking element that reduces or eliminates microbending caused by the water-swellable particulate powders by employing such water-swellable powders in conjunction with a smooth but perforated compression-resistant carrier tape. The water-blocking element is deployed within optical-fiber buffer tubes to water-block the buffer tubes and to minimize microbending that can occur when water-swellable particulate powders press against optical fibers. | 07-01-2010 |
20100202741 | Central-Tube Cable with High-Conductivity Conductors Encapsulated with High-Dielectric-Strength Insulation - Disclosed is a novel central-tube cable with high-conductivity conductors. The novel central-tube cable according to the present invention yields a fiber optic cable with a smaller diameter than found in stranded-tube-cable designs. | 08-12-2010 |
20100215328 | Cable Having Lubricated, Extractable Elements - The invention relates to a cable ( | 08-26-2010 |
20100239216 | Fiber Optic Cables and Methods for Forming the Same - A loose tube optical fiber cable includes at least one cable unit. Each cable unit includes a plurality of loose, non-buffered optical fibers, a strength yarn at least partially surrounding the non-buffered optical fibers, and a jacket surrounding the strength yarn and the non-buffered optical fibers. | 09-23-2010 |
20100278495 | FIBER OPTIC CABLE ASSEMBLY WITH FLOATING TAP - A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member. A bonding structure bonds the cable fiber assembly, buffer conduit and movable member so that the cable fiber assembly can translate but not rotate relative to the cable within the NAP. This allows the tap point to “float” within the NAP when the cable fiber assembly needs to translate within the cable. | 11-04-2010 |
20110002588 | OPTICAL FIBER CABLE AND METHOD OF MID-SPAN ACCESS THEREOF - An optical fiber cable is comprised of: a slotted core ( | 01-06-2011 |
20110008007 | OPTICAL FIBER CABLE - An optical fiber cable is comprised of: a slotted core elongated along an axis of the optical fiber cable, the slotted core including a slot running in parallel with the axis and a groove accessible through the slot; one or more optical fibers placed in the groove; a sheath enclosing the slotted core and the optical fibers; a bonding portion where the slotted core is bonded with the sheath; a first strength member embedded in the slotted core and running in parallel with the axis; and a second strength member embedded in the sheath and running in parallel with the axis, wherein the first and second strength members are aligned on a plane including the axis. | 01-13-2011 |
20110013873 | FIBER OPTIC AERIAL DROP CABLE - A fiber optic cable has at least two round strength members, at least one fiber optic element, with the strength members and the fiber optic element forms a core. A jacket surrounds the core elements. The strength members are arranged side by side within the jacket such that the inside diameter of the jacket is substantially equal to the combined diameters of the two round strength members and where within the jacket there are two voids not filled by the round strength members. The at least one fiber optic element is positioned in one of the voids the round strength members is dimensioned such that when the fiber optic element is within the void, it does not reach the inside surface of the jacket. | 01-20-2011 |
20110038586 | FIBER OPTIC CABLE DESIGN WITH CLEAR BUFFER TUBES - A fiber optic cable has at least one fiber and at least one buffer tube surrounding the fiber, with the fiber being loosely held within the buffer tube. A jacket surrounds the tube where the at least one buffer tube is constructed from an extruded transparent polymer, allowing the arrangement of the fiber within the buffer tube to be visible along the entire length of the tube. | 02-17-2011 |
20110075980 | Armored Fiber Optic Assemblies and Methods Employing Bend-Resistant Multimode Fiber - Armored fiber optic assemblies and methods are disclosed that include a dielectric armor and at least one bend-resistant multimode optical fiber. The dielectric armor has an armor profile, thereby resembling conventional metal armored cable to the craft. The dielectric armor provides additional crush and impact resistance and the like for the optical fibers and/or fiber optic assembly therein. The dielectric armor is advantageous to the craft since it provides the desired mechanical performance without requiring the time and expense of grounding like conventional metal armored cables. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space. The use of at least one bend-resistant multimode optical fiber allows for improved bend performance for the armored fiber optic assemblies, allowing for tighter cable routing as compared to armored fiber optic assemblies having conventional multimode optical fiber. | 03-31-2011 |
20110091172 | Fiber Optic Cable Assemblies and Securing Methods - Fiber optic cable assemblies and related components, securing methods, and fiber optic cable preparation methods for securing of a fiber optic cable to a retention body and/or fiber optic connector are disclosed. An end portion of the fiber optic cable is prepared and inserted into a retention body or the like for securing the cable to the same. In one embodiment, a partially exposed portion of a strength component and a portion of a cable jacket are secured to a retention body while another portion of the strength component remains secured to the cable jacket. In this manner, the fiber optic cable is secured to the retention body while the strength component and the cable jacket also remain secured to each other for providing strain relief. | 04-21-2011 |
20110091173 | Fiber Optic Jumper Cable with Bend-Resistant Multimode Fiber - A fiber optic jumper cable having a central axis includes a bend-resistant multimode optical fiber generally arranged along the central axis. A tensile-strength layer surrounds the bend-resistant optical fiber. A protective cover surrounds the tensile-strength layer and has an outside diameter D | 04-21-2011 |
20110091174 | Flat Drop Cable with Center Strength Member - The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first, second and third separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The third passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The first, second and third passages are generally aligned along the major axis with the third passage being positioned between the first and second passages. The fiber optic cable also includes a plurality of optical fibers positioned within each of the first and second passages and a tensile strength member positioned within the third passage. The tensile strength member has a transverse cross-sectional profile that is elongated in the orientation extending along the major axis. | 04-21-2011 |
20110176782 | Water-Soluble Water-Blocking Element - The present invention provides optical-fiber communication cables with an improved water-blocking element that reduces or eliminates microbending caused by water-swellable particulate powders. In one embodiment, such water-swellable powders may be employed in conjunction with a smooth water-soluble carrier tape. In another embodiment, such water-swellable powders may embedded within a water-soluble binder. The water-blocking element is deployed within optical-fiber buffer tubes to water-block the buffer tubes and to minimize microbending that can occur when water-swellable particulate powders press against optical fibers. | 07-21-2011 |
20110222826 | STRAIN-RELEIF MEMBER AND FIBER OPTIC DROP CABLE ASSEMBLY USING SAME - A strain-relief member having a body formed from a block copolymer and designed for use in a fiber optic drop cable assembly. The body has a central channel and a cylindrical connector-end portion sized to surround an end-portion of a connector. The body also has a tapered cable-end portion sized to surround an end portion of a fiber optic cable that connects to the connector and that has a preferential bend axis. The strain-relief member is configured to limit an amount of strain in the strength components to less than 0.041 when subjected to flex and proof testing. A fiber optic drop cable assembly that has a fiber optic cable with a preferential bend axis and that employs the strain-relief member is also disclosed. | 09-15-2011 |
20110243515 | Optical fiber cables - Described are new cable designs for indoor installations wherein the cable comprises a dual-layer optical fiber buffer encasement of acrylate resin. The buffer encasement has an acrylate compliant inner layer that protects the fiber and minimizes stress transfer to the fiber; and a hard, tough acrylate outer layer that provides crush resistance. The dual-layer optical fiber buffer encasement is wrapped with reinforcing yarn and encased in an outer protective jacket. A dual jacket embodiment adapted for indoor/outdoor installations is also described. | 10-06-2011 |
20110262089 | SMALL-DIAMETER HIGH BENDING-RESISTANCE FIBER OPTIC CABLE - A small-diameter high bending-resistance fiber optic cable adapted for obtaining a high tensile-resistance and a high bending-resistance is provided. The small-diameter high bending-resistance fiber optic cable is particularly adapted for being deployed in indoor pipelines. The small-diameter high bending-resistance fiber optic cable includes at least one optical fiber core, an outer protection sheath, and a plurality of tensile-resistance members. The optical fiber core is positioned in a center of the outer protection sheath. The tensile-resistance members are uniformly distributed in the outer protection sheath. The tensile-resistance members are made of aramid yarn material. | 10-27-2011 |
20110268400 | Data-Center Cable - The present invention relates to a data-center cable having good attenuation performance both at room temperature and during temperature cycling, as well as good resistance to compression. | 11-03-2011 |
20110286707 | FLAT DROP CABLE WITH MEDIAL BUMP - An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a bowtie shape. The outer jacket defines at least first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The fiber optic cable includes a plurality of optical fibers positioned within the first passage and a tensile strength member positioned within the second passage. The tensile strength member has a highly flexible construction and a transverse cross-sectional profile that is elongated in the orientation extending along the major axis. | 11-24-2011 |
20110293230 | OPTICAL CABLE WITH DRY CORE AND DRY BUFFER TUBES - An optical fiber cable includes at least one buffer tube that includes a plurality of water-blocking plugs and an optical fiber. The water-blocking plugs can be spaced along the buffer tubes, substantially filling the cross-sectional space within the buffer tube not already filled by the optical fiber. The water-blocking plugs can provide a stronger bond between the optical fibers and the inner tube. This is reflected by a high normalized pullout force for the optical fiber, such as, above 5.0 N/m. Yet, the resulting fiber optic cable does not suffer from problems associated with a higher pullout force, such as attenuation. | 12-01-2011 |
20120045186 | CONDUCTIVE ELEMENTS IN CABLE JACKETS AND SEPARATORS - A cable, of the twisted pair or fiber optic type, includes conductors for permitting patch cord tracing between ports. In the case of a twisted pair cable, the conductors may be embedded within, or attached to a surface of, a separator. Alternatively, in the case of a twisted pair cable, the conductors may be embedded within, or attached to a surface of, a jacket. In the case of a fiber optic cable, the conductors may be located amongst strength members. Alternatively, in the case of a fiber optic cable, the conductors may be embedded within, or attached to a surface of, a jacket. | 02-23-2012 |
20120099825 | FIBER OPTIC CABLE AND METHOD OF MANUFACTURE - A fiber-optic cable for applications subject to extreme temperatures and high crushing and bending forces incorporating a loose fluoropolymer buffer material, a aramid/fiberglass strength member, and a fluoropolymer outer jacket compromising low smoke, low toxicity, and low flammability when exposed to flame. | 04-26-2012 |
20120134634 | FIBER OPTIC CABLE WITH IMPROVED LOW TEMPERATURE AND COMPRESSION RESISTANCE - A fiber optic cable is provided with a plurality of buffer tubes each with one or more optical fibers, a plurality of strength members and a jacket. The fibers within the cable meet maximum attenuation of substantially 0.07 db increase when decreasing from −23° C. to −60° C. | 05-31-2012 |
20120134635 | OPTICAL CABLE WITH IMPROVED STRIPPABILITY - An optical cable includes a buffer tube housing at least one optical fiber, a sheath surrounding such buffer tube and at least one longitudinal strength member embedded in the sheath, in which at least one separation element is provided between a portion of the outer surface of the buffer tube and the inner surface of the sheath, laying in an axial plane not containing the at least one strength member. | 05-31-2012 |
20120155815 | CABLE WITH NON-STRIPPING OPTICAL FIBER - Cables having non-stripping, or buffer-free, optical fibers are disclosed. The cables each have a buffer-free optical fiber including a core, cladding layer and a thin protective coating enclosing the cladding and having an overall diameter of 125 μm. This protective coating protects the cladding and core from moisture and provides structural integrity to prevent physical damage to the fiber during installation and termination with connectors. Embodiments of this non-stripping fiber do not require removal of a buffer layer during field termination so connections can be formed using simple cleaving techniques. As such, the field termination process for embodiments is simplified compared with conventional approaches. | 06-21-2012 |
20120177331 | OPTICAL FIBER CABLE HAVING DUMMY RODS WITH NON-CIRCULAR CROSS-SECTION - An optical fiber cable comprising a polymeric jacket and at least one elongated buffer tube having a substantially circular cross-section and at least one optical fiber disposed within the at least one buffer tube. The optical fiber cable further comprises at least one dummy rod having a substantially non-circular cross-section, wherein the cross-sectional area of each dummy rod is at least 10% less than the cross-sectional area of the at least one elongated buffer tube along a majority of the length of the at least one dummy rod. | 07-12-2012 |
20120213483 | Optical-Fiber Interconnect Cable - An optical-fiber interconnect cable includes one or more optical fibers and one or more electrical conductors surrounded by an outer jacket. The optical fibers, such a multimode optical fibers, are typically enclosed within a flexible polymeric tube to form a flexible subunit. | 08-23-2012 |
20120243841 | MULTIFIBER SUBUNIT CABLE - Micromodule subunit cables are constructed to allow for ease of identification between optical fibers in differing groups of optical fibers. In one cable, a first group of fibers is located within a first subunit while a second group of fibers is located within a second subunit, both subunits being enclosed in a cable jacket. | 09-27-2012 |
20130071075 | ARMORED FIBER OPTIC ASSEMBLIES - Armored fiber optic assemblies and methods are disclosed that include a dielectric armor and at least one bend-resistant multimode optical fiber. The dielectric armor has an armor profile, thereby resembling conventional metal armored cable to the craft. The dielectric armor provides additional crush and impact resistance and the like for the optical fibers and/or fiber optic assembly therein. The dielectric armor is advantageous to the craft since it provides the desired mechanical performance without requiring the time and expense of grounding like conventional metal armored cables. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space. The use of at least one bend-resistant multimode optical fiber allows for improved bend performance for the armored fiber optic assemblies, allowing for tighter cable routing as compared to armored fiber optic assemblies having conventional multimode optical fiber. | 03-21-2013 |
20130071076 | Partially Impregnated, Fiber Reinforced Thermoplastic Strength Member - Fiber bundles ( | 03-21-2013 |
20130094823 | FIBER OPTIC CABLES WITH EXTRUDED ACCESS FEATURES FOR ACCESS TO A CABLE CAVITY - Cables are constructed with embedded discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of polymer material coextruded in the cable jacket. | 04-18-2013 |
20130177283 | FIBER OPTIC CABLE SUB-ASSEMBLIES AND METHODS OF ASSEMBLING - A fiber optic cable sub-assembly comprises a fiber optic cable including at least one optical fiber, a cable jacket that houses the optical fiber and at least one metal strength member. A collar is attached to an end portion of the metal strength member, wherein the optical fiber extends beyond an outer axial end of the collar. In another example a fiber optic cable assembly is fabricated from the fiber optic cable sub-assembly wherein a connector housing is attached to the collar, and an interface operably connects an end portion of the optical fiber to an active optical component within the connector housing. In further examples, methods of assembly for a fiber optic cable sub-assembly are provided along with using the sub-assembly for making a fiber optic cable assembly. | 07-11-2013 |
20130188916 | FIBER OPTIC CABLE FOR VERY-SHORT-DISTANCE NETWORKS - A fiber optic cable includes a polymeric jacket defining an outer periphery and a cavity interior thereto, an optical fiber positioned within the cavity, and first and second longitudinal strength elements fully embedded in the jacket on opposite sides of the cavity from one another, where the strength elements define a bend axis of the cable passing there through that is orthogonal to the length of the cable, and the bend axis and the length of the cavity define a preferential plane for bending. The cable resists bending about a third axis that is orthogonal to the length of the cable and the bend axis, where the third axis and the length of the cable define a non-preferential plane for bending. The difference in flexural rigidity between the preferential and non-preferential planes limits formation of spontaneous knots in a coil of the cable while providing flexibility for ease of handling. | 07-25-2013 |
20130209045 | VISUAL TRACER SYSTEM FOR FIBER OPTIC CABLE - A fiber optic cable includes a first optical fiber, a jacket, and a second optical fiber. The first optical fiber includes a glass core and cladding. The glass core is configured to provide controlled transmission of light through the fiber optic cable for high-speed data communication. The jacket has an interior surface that defines a conduit through which the first optical fiber extends. The jacket further has an exterior surface that defines the outside of the fiber optic cable. The second optical fiber is integrated with the exterior surface of the jacket. | 08-15-2013 |
20130216193 | FIBER OPTIC JUMPER CABLE - A fiber optic jumper cable having a central axis includes a bend-resistant optical fiber generally arranged along the central axis. A tensile-strength layer surrounds the bend-resistant optical fiber. A protective cover surrounds the tensile-strength layer and has an outside diameter D | 08-22-2013 |
20130251321 | Optical Fiber Cables - Described are new cable designs for indoor installations wherein the cable comprises a dual-layer optical fiber buffer encasement of acrylate resin. The buffer encasement has an acrylate compliant inner layer that protects the fiber and minimizes stress transfer to the fiber; and a hard, tough acrylate outer layer that provides crush resistance. The dual-layer optical fiber buffer encasement is wrapped with reinforcing yarn and encased in an outer protective jacket. A dual jacket embodiment adapted for indoor/outdoor installations is also described. | 09-26-2013 |
20130287350 | OPTICAL FIBER ASSEMBLIES HAVING A POWDER OR POWDER BLEND AT LEAST PARTIALLY MECHANICALLY ATTACHED - A fiber optic cable includes a tube formed from a flame-retardant material, an optical fiber disposed in a cavity of the tube, and powder comprising flame-retardant particles. At least a portion of the powder is mechanically attached to a surface of the cavity, where the mechanical attachment of the powder allows a portion of flame-retardant particles of the powder to protrude beyond the surface and not be completely embedded therein. | 10-31-2013 |
20140023330 | FIBER OPTIC CABLE WITH CELLULOSIC FILLER ELEMENTS - A fiber optic cable includes: a plurality of optical fibers, the fibers divided into a plurality of fiber optic subunits, each of the subunits defining generally a circle having a first diameter; at least one elongate filler element, the filler element comprising a cellulosic material, wherein in end view the filler element defines generally a circle having a second diameter that is substantially the same as the first diameter; and an outer jacket surrounding the optical fiber subunits and the filler element, wherein the total number of fiber optic subunits and fillers elements is at least four. In this configuration, the cable can pass typical flame testing while being manufactured at a lower cost than current cable. | 01-23-2014 |
20140023331 | COMPOSITION FOR HIGH STRENGTH LOOSE TUBE TYPE FIBER OPTIC CABLE WITH EXCELLENT FLEXIBILITY AND IMPACT RESISTANCE - Disclosed is a composition for a high strength loose tube type fiber optic cable with excellent flexibility and excellent impact resistance, which includes a polypropylene-polyethylene copolymer having a melt flow index (MFI) of 1.1 g/10 minutes to 3.0 g/10 minutes at 230° C. and a flexural modulus of 10,000 to 23,000 kg/cm | 01-23-2014 |
20140037256 | MICROMODULE CABLES AND BREAKOUT CABLES THEREFOR - A breakout cable includes a polymer jacket and a plurality of micromodules enclosed within the jacket. Each micromodule has a plurality of bend resistant optical fibers and a polymer sheath comprising PVC surrounding the bend resistant optical fibers. Each of the plurality of bend resistant optical fibers is a multimode optical fiber including a glass cladding region surrounding and directly adjacent to a glass core region. The core region is a graded-index glass core region, where the refractive index of the core region has a profile having a parabolic or substantially curved shape. The cladding includes a first annular portion having a lesser refractive index relative to a second annular portion of the cladding. The first annular portion is interior to the second annular portion. The cladding is surrounded by a low modulus primary coating and a high modulus secondary coating. | 02-06-2014 |
20140064683 | CHEMICAL COMPOSITION OF FILLER RODS FOR USE IN OPTICAL FIBER CABLES - The present disclosure provides filler rods that have higher melting temperature than the conventional filler rods and methods of making the filler rods. For some embodiments, the filler rod is made from a blend of polyethylene and polypropylene. | 03-06-2014 |
20140112630 | Optical Fiber Cable - An optical fiber cable including, in a radial direction outward, a central strength member, a first layer of loose buffer tubes stranded around the central strength member, at least one of the loose buffer tubes of the first layer containing at least one light waveguide, an intermediate layer, a second layer of loose buffer tubes stranded around the intermediate layer, at least one of the loose buffer tubes of the second layer containing at least one light waveguide, and a jacket surrounding the second layer of loose buffer tubes, wherein the intermediate layer is formed of a material having a high coefficient of friction. | 04-24-2014 |
20140153885 | FIBER OPTIC CABLE FOR VERY-SHORT-DISTANCE NETWORKS - A fiber optic cable includes a polymeric jacket defining an outer periphery and a cavity interior thereto, an optical fiber positioned within the cavity, and first and second longitudinal strength elements fully embedded in the jacket on opposite sides of the cavity from one another, where the strength elements define a bend axis of the cable passing there through that is orthogonal to the length of the cable, and the bend axis and the length of the cavity define a preferential plane for bending. The cable resists bending about a third axis that is orthogonal to the length of the cable and the bend axis, where the third axis and the length of the cable define a non-preferential plane for bending. The difference in flexural rigidity between the preferential and non-preferential planes limits formation of spontaneous knots in a coil of the cable while providing flexibility for ease of handling. | 06-05-2014 |
20140153886 | FIBER OPTIC CABLES ALLOWING FIBER TRANSLATION TO REDUCE BEND ATTENUATION - A cable includes a channel with an aspect ratio that houses optical fibers therein. The cable includes first and second stranded conductors on opposing sides of the channel. The channel is arranged with respect to the stranded conductors so that the fibers assume low strain positions in the channel when the cable is bent. | 06-05-2014 |
20140199036 | MULTIFIBER SUBUNIT CABLE - Micromodule subunit cables are constructed to allow for ease of identification between optical fibers in differing groups of optical fibers. In one cable, a first group of fibers is located within a first subunit while a second group of fibers is located within a second subunit, both subunits being enclosed in a cable jacket. | 07-17-2014 |
20140212101 | FIBER OPTIC CABLES AND ASSEMBLIES - A fiber optic cable includes a jacket, a pair of strength members, and an optical fiber. The jacket has a cavity, a major dimension and a minor dimension, and a medial portion. The strength members are disposed on opposing sides of the cavity and impart a preferential bend characteristic to the cable. The at least one optical fiber is disposed within the cavity. The jacket includes preferential tear portions disposed between a respective strength member and the medial portion, for separating the strength members from the medial portion. | 07-31-2014 |
20140241678 | FIBER OPTIC CABLE ASSEMBLY - A fiber optic cable assembly includes a distribution cable and a tether cable. The distribution cable includes a jacket having a generally flat profile such that the periphery of the distribution cable, when viewed in cross-section, includes two major surfaces of the jacket that are generally flat and are connected by arcuate end surfaces of the jacket. The jacket defines a cavity therein. Further, the distribution cable includes strength members embedded in the jacket and positioned on opposing sides of the cavity. The distribution cable includes a plurality of optical fibers extending through the cavity. The tether cable includes an optical fiber that is fusion spliced to one of the optical fibers of the distribution cable by way of an opening in a side of the jacket of the distribution cable. | 08-28-2014 |
20140369656 | COUPLING SYSTEM FOR A FIBER OPTIC CABLE - A fiber optic cable includes a jacket, an element of the cable interior to the jacket, and first and second powders. The element includes a first surface and a second surface. The cable further includes a third surface interior to the jacket and facing the first surface at a first interface and a fourth surface interior to the jacket and facing the second surface at a second interface. At least one of the third and fourth surfaces is spaced apart from the jacket. The first powder is integrated with at least one of the first and third surfaces at the first interface and the second powder integrated with at least one of the second and fourth surfaces at the second interface. The first interface has greater coupling than the second interface at least in part due to differences in the first and second powders. | 12-18-2014 |
20150016790 | FIBER OPTIC CABLE - A cable includes a jacket defining an exterior of the cable and a rigid tube. The cable further includes densely-packed strength members on the outside of the rigid tube, compressed between the rigid tube and the jacket, and loosely-packed strength members on the inside of the rigid tube. Further the cable includes a core that is interior to the tube. | 01-15-2015 |
20150055921 | OPTICAL FIBER ASSEMBLIES HAVING A POWDER OR POWDER BLEND AT LEAST PARTIALLY MECHANICALLY ATTACHED - A fiber optic cable includes one or more optical fibers, a jacket, strength members, and water-swellable powder. The jacket is formed from a polymer and has a cavity defined therein. The one or more optical fibers extend through the cavity. Further, the jacket is non-round in cross-section and the strength members are encapsulated in the jacket on opposite sides of the cavity. The water-swellable powder is at least partially mechanically attached to an inner surface of the cavity, where the mechanical attachment of the water-swellable powder allows a portion of particles of the water-swellable powder to protrude beyond the surface and not be completely embedded therein. | 02-26-2015 |
20150093084 | FAN-OUT ASSEMBLIES AND FIBER OPTIC ASSEMBLIES INCLUDING FIBER MANAGEMENT STRUCTURE FOR FURCATIONS - Fiber management structures for fan-out assemblies that are used to furcate a fiber optic cable are disclosed, as are fiber optic assemblies with fiber management structures and related methods. The fiber management structures each include channels extending between opposed first and second ends. A plurality of fan-out tubes are received in the plurality of channels such that the fiber management structure organizes the fan-out tubes, thereby allowing a compact furcation body to be formed even when furcating high fiber count cables. | 04-02-2015 |
20150370026 | OPTICAL FIBER CABLE - A rugged optical micromodule cable is provided. The cable includes a composite cable jacket including a first cable jacket layer formed from a first material and a second cable jacket layer formed from a second material. The first cable jacket layer provides at least | 12-24-2015 |
20160202435 | OPTICAL CABLE FOR TERRESTRIAL NETWORKS | 07-14-2016 |
20160202441 | MULTI-SERVICE TERMINAL AND COMPONENTS THEREFORE | 07-14-2016 |
20160377825 | JACKET FOR A FIBER OPTIC CABLE - A fiber optic cable includes a core and a jacket surrounding the core. The jacket includes a base layer, a surface layer defining an exterior surface of the fiber optic cable, and an interface between the surface and base layers. The base layer is formed from a first composition that includes polyethylene. The surface layer has a thickness of at least 300 micrometers and is formed from a second composition that differs from the first composition. The second composition includes polyethylene as well as one or more additives, including paracrystalline carbon. The interface cohesively bonds the surface and base layers to one another at least in part due to molecular chain entanglement of the polyethylene of the first and second compositions. | 12-29-2016 |