Class / Patent application number | Description | Number of patent applications / Date published |
385099000 | Including splice joint reinforcement | 27 |
20080292252 | Fiber Optic Patch Kit and Method for Using the Same - The present method and kit provide for effective and efficient patching of fiber optic cables. The kit comprises mechanical fiber optic splicers, a fiber optic patch, a splice housing, and a protective housing. The mechanical fiber optic splicers can be used to splice the fiber optic cable and the fiber optic patch. The mechanical fiber optic splicers, the fiber optic patch, and a portion of the fiber optic cable can be enclosed within the splice housing. The splice housing can then be enclosed within a protective housing. | 11-27-2008 |
20090034917 | SYSTEM FOR SPLICING FIBER DROP CABLES - An splice enclosure for supporting a splice between the ends of a pair of fiber optic drop cables includes at least one longitudinally-extending flexible support member extending across the splice, a cover member which covers the splice and which overlaps the jackets of the two cables, and at least one collar. Each collar has a central aperture through which the buffer tube of a cable can be passed, at least one aperture for receiving a strength member of one of the cables, and at least one aperture for receiving an end of a support member. The support members preferably have similar or identical dimensions, composition and flexibility as the strength members of the cables so as to substantially preserve the flexibility of the cable across the splice. Also disclosed are kits for forming enclosures for optical fiber splices and methods for enclosing optical fiber splices. | 02-05-2009 |
20090162019 | SPLICED-ON CONNECTOR SYSTEM AND METHOD, SPLICER, AND CONNECTOR HOLDER FOR PRODUCING THE SAME - Provided is a spliced-on connector system which includes a connector body, an incoming fiber which is spliced to the connector body, a splice sleeve which covers a splice point at which the incoming fiber is spliced to the connector body, and an extender tube which covers the splice sleeve. Also provided is a method of producing the spliced-on connector system; a holder including a depression which holds a connector body in a position in which the connector body is spliced to an incoming fiber, the holder being disposed inside a splicer which splices the connector body to the incoming fiber; and a splicer including a tube heater which heat-shrinks a splice sleeve over a splice point at which a connector body is spliced to an incoming fiber, the tube heater accommodating the connector holder which holds the connector body. | 06-25-2009 |
20090324179 | SYSTEM AND METHOD FOR PROVIDING LARGE SCALE, AUTOMATED, FIBER-OPTIC, CROSS-CONNECTION - A system and method for automatically inserting optical-fiber (fiber-optics) cable jumpers into a patch panel to connect optical signal source equipment to optical signal destination equipment, and for automatically removing those jumpers from that patch panel to disconnect that equipment. This is accomplished robotically under computer control. Large scale fiber-optical splicings can be made, on the order of ten thousand (10,000) separate optical splices or more. Previous embodiments required hand insertion of these jumpers. Embodiments of the present invention permit any un-occupied port to be connected to any other un-occupied port, regardless of their input or output port status, where previous embodiments required only unoccupied input ports to be connected to unoccupied output ports. | 12-31-2009 |
20100014817 | Index-matching gel for nano-engineered optical fibers and mechanical splice assemblies and connectors using same - An index-matching gel for use with nano-engineered optical fibers is disclosed. The index-matching gel is cross-linked, which prevents the gel from wicking into the voids and down the nano-engineered optical fiber to a depth where the fiber performance and/or device performance is compromised. The formulation comprises a non-reactive constituent A, two reactive constituents B and C, and a catalyst D. The gel is pre-cured and forms a cross-linked internal network that results in a single-component gel that does not require meter mixing of an additional constituent or heat curing. The gel is suitable for use in the mechanical splicing of optical fibers when at least one of the optical fibers is a nano-engineered optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nano-engineered optical fiber. | 01-21-2010 |
20100086266 | Splice of Fiber Optic Cables - The present disclosure relates to techniques for facilitating installing a fiber optic connector at the end of a fiber optic cable. One aspect of the disclosure involves splicing a first fiber optic cable to a second fiber optic cable. The second fiber optic cable may be pre-connectorized. In certain embodiments, a plurality of splice enclosure components are positioned to form a splice enclosure that encloses the portion of an optical fiber of the first cable that is spliced to an optical fiber of the second cable. The splice enclosure protects the optical fibers at the site of the splice and securely holds the strength members of the fiber optic cables. Furthermore, splice enclosure components are positioned to form a cable enclosure that encloses the splice enclosure and exposed portions of the fiber optic cables. | 04-08-2010 |
20100232752 | Splice protection device for optical splices - The invention relates to a splice protection device for spliced optical fibers and to a method particularly for providing an access point to an optical fiber cable in a dwelling unit of a multi dwelling unit. To facilitate mounting of a splice protection device, the splice protection device according to the invention comprises a first and a second tube, the second tube being arranged concentrically and slidable within the first tube, the first and second tubes being adapted to receive at least one spliced fiber. The present invention furthermore relates to a method for providing an access point to a provider optical cable in a dwelling unit of a multi-dwelling unit. The inventive method avoids splicing work within the dwelling unit and is characterized by the steps of branching-off at least one branching optical fiber of the provider cable at a branch point adjacent to said dwelling unit, passing a preassembled connector cable being provided with a connector through duct work for cable to the branch point and splicing the branching optical fiber with an optical fiber of the connector cable. | 09-16-2010 |
20100247044 | CONTROLLED RADIUS SPLICE PROTECTOR AND FABRICATION PROCESS - A controlled radius splice protector includes a first fiber optic fiber, a second fiber optic fiber, a fiber splice connecting the first fiber optic fiber and the second fiber optic fiber, a hot melted splice tubing extending over the fiber splice and a jacket tubing receiving the hot melted splice tubing and pre-formed to a selected bend radius. | 09-30-2010 |
20100322571 | PROTECTION SLEEVE, MANUFACTURING APPARATUS FOR PROTECTION SLEEVE, AND MANUFACTURING METHOD FOR PROTECTION SLEEVE - A protection sleeve includes a heat shrinkable tube and an adhesive tube and a reinforcing rod housed inside the heat shrinkable tube. The heat shrinkable tube, the adhesive tube, and the reinforcing rod are adhered together in a section spanning across a lengthwise section of the heat shrinkable tube. A protection sleeve manufacturing apparatus includes a jig for securing protection sleeves and a heating device. The jig is contrived to hold a plurality of protection sleeves (each including a heat shrinkable tube, an adhesive tube and a reinforcing rod housed inside the heat shrinkable tube) in a parallel arrangement with spaces in-between. The heating device includes a plurality of hot air vents, means for setting a first distance between the jig and the hot air vents, and a means of setting the jig and the hot air vents to a second distance that is closer than the first distance. | 12-23-2010 |
20110280525 | Splice Enclosure Arrangement for Fiber Optic Cables - An optical fiber cable includes a first cable segment; a second cable segment; and a splice enclosure. The first cable segment can have a different configuration than the second cable segment. The splice enclosure is coupled to the strength member and strength component of the first cable segment and the second cable segment. One example splice enclosure includes a first enclosure body having a first threaded connection region and a second enclosure body having a second threaded connection region. Another example splice enclosure includes a tubular enclosure with two end caps. Cable retention members are positioned within the splice enclosure at fixed axial positions. | 11-17-2011 |
20110286704 | System and Method for Performing and Protecting Hybrid Line Splices - A method for providing a protected splice in a hybrid cable that has a fiber optic line and an electrical line includes the steps of providing a mechanical optic splice in the fiber optic line; providing a electrical splice in the electrical line proximate to the optic splice; providing a jacket over the optic splice; installing a boot over the electrical splice; disposing the jacket and the boot in a slotted sleeve; positioning the slotted sleeve within a housing; and anchoring the housing to the hybrid cable on opposing sides of the splices. | 11-24-2011 |
20110299818 | METHOD AND APPARATUS FOR MECHANICALLY SPLICING TWO OPTIC FIBERS - Apparatus for mechanically splicing two optic fibers, including a housing member having opposed first and second optic fiber receiving sections separated by an optic fiber splicing section; a clamping section having first and second optic fiber restraining members and a splice restraining member overlying respective ones of the first and second optic fiber receiving sections and the optic fiber splicing section, wherein the clamping section is movable between an optic fiber receiving position whereby optic fibers can be inserted into respective optic fiber receiving sections so that optic fiber cores of said optic fibers are in optical communication in the splicing section, and an optic fiber securing position whereby said optic fibers are held by frictional engagement between said optic fiber receiving sections and said restraining members. | 12-08-2011 |
20120020630 | METHOD FOR SPLICING AN OPTICAL FIBER ELEMENT - The present invention relates to a method for splicing an optical fiber element ( | 01-26-2012 |
20120170899 | METHOD FOR REINFORCING A SPLICE PART AND REINFORCING STRUCTURE - There are provided a method for reinforcing a splice part and a reinforcing structure, which enable reinforcement of a splice part of optical fiber cores with sufficient strength. | 07-05-2012 |
20120177328 | SPLICE ENCLOSURE ARRANGEMENT FOR FIBER OPTIC CABLES - An optical fiber cable includes a first cable segment; a second cable segment; and a splice enclosure. The first cable segment can have a different configuration than the second cable segment. The splice enclosure is coupled to the strength member and strength component of the first cable segment and the second cable segment. One example splice enclosure includes a first enclosure member and a second enclosure member. The strength component can be glued to one end of the splice enclosure and the strength member can be clamped or otherwise retained by another end of the splice enclosure. | 07-12-2012 |
20120201500 | SPLICED OPITCAL CABLE ASSEMBLY - A spliced optical cable assembly is reinforced at a spliced portion of coated optical fibers to have adequate strength. The spliced optical cable assembly includes: a pair of optical fiber cables in which high-strength fibers are aligned in the longitudinal direction around coated optical fibers. The outer circumference of the coated optical fibers being covered by sheaths. The spliced optical cable assembly further includes a connecting portion in which the pair of optical fiber cables are connected and the coated optical fibers extend from the sheaths. Glass fibers exposed from the coating of the coated optical fibers spliced to each other. The connected portion is covered and formed into an integral unit, together with the high-strength fibers exposed from the sheaths, by a reinforcing tube placed over the optical fiber cables and caused to contract so that both ends of the reinforcing tube engage the sheaths of the respective optical fiber cables. | 08-09-2012 |
20130156388 | OPTICAL CABLE CONNECTION CASING ADAPTED FOR OPERATION OF GUIDING AND CONNECTING OPTICAL CABLE TO BRANCHING HALFWAY - An optical cable connection casing includes at least one cable in-out end surface on which at least one connection part and at least one first hollow tubular column are located. The connection part and the first hollow tubular column allow the optical cable to pass in and out the connection casing through the connection part and the first hollow tubular column in the form of double optical cables after the optical cable being oppositely bent without cutting off the optical fiber core of the optical cable, respectively; wherein the optical cable will be guided and connected to a branching halfway. | 06-20-2013 |
20130251319 | CABLE ASSEMBLY AND METHOD - A fiber optic cable assembly includes a distribution cable and a tether cable physically coupled thereto. The distribution cable has a cavity through which a fiber optic ribbon extends, and the tether cable includes a jacket and an optical fiber. The distribution cable includes a network access point at a mid-span location, which includes an opening between the cavity to the exterior of the distribution cable. At least a portion of the ribbon extends through the opening. The ribbon of the distribution cable includes a plurality of optical fibers, and the optical fiber of the tether cable is spliced to an optical fiber of the ribbon. The corresponding spliced connection is surrounded by the jacket of the tether cable, whereby the jacket serves as a housing. | 09-26-2013 |
20130259434 | OVERMOLD BONDING SYSTEM FOR FIBER OPTIC CABLE - A fiber optic cable assembly includes a fiber optic cable, a tether, and an overmold. The fiber optic cable includes an optical fiber, a strength member, and a jacket, where the jacket includes an interior portion contacting the strength member and an exterior portion adjoining the interior portion. The interior and exterior portions of the jacket both include polyethylene, and the exterior portion further includes an additive that is not in the interior portion. The tether is coupled to the fiber optic cable at an attachment point. The optical fiber or another optical fiber spliced to the optical fiber, diverges from the fiber optic cable via the tether. The overmold encloses the attachment point and is attached directly to a discrete section of the exterior portion of the jacket proximate to the attachment point. The additive facilitates bonding of the overmold to the discrete section. | 10-03-2013 |
20130266279 | OPTICAL CONNECTOR - In an optical connector of the invention, the rotation in a conventional angle polish connector can be prevented, while external force acting on the connector can be prevented from affecting a ferrule. The optical connector includes a ferrule | 10-10-2013 |
20130294733 | Optical Fiber Protective Tubing Assembly - An apparatus for use in a fiber optic network includes a furcation tube having a first end and a second end. An optical fiber passes through the furcation tube, the optical fiber having an end portion that extends outwardly beyond the second end of the furcation tube. A heat-recoverable tube fixes the optical fiber relative to the furcation tube adjacent the second end of the furcation tube, the heat-recoverable tube having a first portion affixed to the furcation tube and a second portion affixed to the end portion of the optical fiber. | 11-07-2013 |
20140161401 | FIELD-INSTALLABLE OPTICAL SLICE - An optical splice for optically coupling two fibers, the splice comprising: (a) a housing having two ends and defining a reservoir; (b) a fiber clamp for clamping two fibers together disposed in the housing; (c) two cable clamps, one on each end of the housing, the cable clamps comprising a purchase point for anchoring strength members of the fibers, the purchase point being operatively connected to the housing; and (d) a sealant in the reservoir, the sealant adapted to engulf and adhere to a fiber extending from each cable clamp to the fiber clamp. | 06-12-2014 |
20140355940 | FIBER OPTIC SPLICE PROTECTING SYSTEM AND METHOD FOR PROTECTING A FIBER OPTIC SPLICE - A fiber optic splice protecting system includes a tubular sized to fit around spliced ends of optical fibers and a sealant positioned in an annular space defined between the optical fibers and the tubular configured to cure from a liquid to a solid. | 12-04-2014 |
20150078715 | SPLICE ENCLOSURE ARRANGEMENT FOR FIBER OPTIC CABLES - An optical fiber cable includes a first cable segment; a second cable segment; and a splice enclosure. The first cable segment can have a different configuration than the second cable segment. The splice enclosure is coupled to the strength member and strength component of the first cable segment and the second cable segment. One example splice enclosure includes a first enclosure body having a first threaded connection region and a second enclosure body having a second threaded connection region. Another example splice enclosure includes a tubular enclosure with two end caps. Cable retention members are positioned within the splice enclosure at fixed axial positions. | 03-19-2015 |
20150110450 | FIBER OPTIC SPLICE PROTECTING SYSTEM AND METHOD FOR PROTECTING A FIBER OPTIC SPLICE - A fiber optic splice protecting system and method includes a tubular sized to fit around spliced ends of optical fibers, and a sealant positioned in an annular space defined between the optical fibers and the tubular. The sealant is configured to cure from a liquid to a solid. The tubular is at least partially formed of a material that is gas permeable. | 04-23-2015 |
20160004012 | FERRULE TRANSFER METHOD AND FERRULE HOLDER - Other end of a built-in optical fiber of a ferrule with one end of the built-in optical fiber matched with a splicing end surface and other end of the built-in optical fiber protruded from an end portion opposite to the splicing end surface and one end of a splicing optical fiber to be spliced are placed is fusion-sliced with the one end of the splicing optical fiber. After that, the ferrule is held by inserting a cylindrical portion of the ferrule into a holding unit of a ferrule holder from the splicing end surface. The ferrule is transferred while holding a stem extended on an opposite side of the holding unit of the ferrule holder and the splicing optical fiber. | 01-07-2016 |
20220137297 | REINFORCEMENT SLEEVE, AND REINFORCEMENT STRUCTURE AND REINFORCEMENT METHOD FOR OPTICAL FIBER CONNECTION PART - A reinforcement sleeve is a member for reinforcing a connection part of an optical fiber tape core wire, and comprises a heat-shrinkable tube, a heat-meltable member, a tension member, and the like. The heat-shrinkable tube is a cylindrical member. The tension member is a rod-shaped member. The tension member and the heat-meltable member are inserted in the heat-shrinkable tube. The heat-meltable member is disposed above the tension member. The tension member is approximately circular or approximately elliptical in a cross section perpendicular to the longitudinal direction of the reinforcement sleeve. More specifically, the surface on the heat-meltable member side of the tension member is formed to have an arc-shaped convex curved surface in a cross section perpendicular to the longitudinal direction of the tension member. | 05-05-2022 |