Class / Patent application number | Description | Number of patent applications / Date published |
385083000 | Groove-type holding structure | 32 |
20090190886 | OPTICAL FIBER STRUCTURE - An optical fiber structure includes a first fiber array and a second fiber array, which are placed one on the other. For example, the first fiber array includes a substrate having four V-shaped grooves and four first optical fibers, the output ends of which are linearly arranged and fixed to the substrate, and the second fiber array includes a substrate having four V-shaped grooves and four second optical fibers, the output ends of which are linearly arranged and fixed to the substrate. The first optical fiber is a multimode fiber having a core and a cladding, and the core diameter is 60 μm and the outer diameter of the fiber is 80 μm. The second optical fiber is a multimode fiber having a core and a cladding, and the core diameter is 105 μm and the outer diameter of the fiber is 125 μm. | 07-30-2009 |
20090310918 | REVERSIBLE FIBER CONNECTOR WITH MECHANICAL SPLICE AND SLIDING LOCK - A connector assembly for reversibly terminating an optical fiber comprises a housing having a cavity extending along a longitudinal axis. An elongate member having a groove extending along a surface thereof is provided within the cavity. An end portion of the fiber is aligned with a fiber stub within the groove such that the stub's splicing face is positioned opposite the fiber's splicing face. A splice anvil is positioned adjacent the member's surface with the anvil's clamping surface overlapping the abutting stub and fiber splicing faces. The clamping mechanism comprises an actuator slideably mounted about the member for movement between a released position and a clamping position in which the inner surface of the actuator displaces the anvil in a direction perpendicular to the longitudinal axis and towards the member's surface, the anvil's clamping surface thus bringing a clamping force to bear on the abutting fiber and fiber stub. | 12-17-2009 |
20090317037 | REVERSIBLE FIBER CONNECTOR WITH MECHANICAL SLIDING SPLICE - A connector assembly for reversibly terminating an optical fiber comprises a housing having a cavity extending along a longitudinal axis. An elongate member having a groove extending along a surface thereof is provided within the cavity. An end portion of the fiber is aligned with a fiber stub within the groove such that the stub's splicing face is positioned opposite the fiber's splicing face. A splice anvil is mounted about the member with the anvil's clamping surface overlapping the abutting stub and fiber splicing faces. The clamping mechanism comprises step surfaces arranged along the member's surface adjacent the groove. When the anvil is moved from the released position to the clamped position, the anvil's inner surface is moved along the step surfaces in a direction perpendicular to the longitudinal axis towards the groove, the anvil's clamping surface bringing a clamping force to bear on the abutting fiber and fiber stub. | 12-24-2009 |
20100014815 | FERRULE, AND METHOD OF PRODUCING AN OPTICAL WAVEGUIDE CONNECTOR, AND OPTICAL WAVEGUIDE CONNECTOR WHICH USE THE FERRULE - A method of producing an optical waveguide connector in which the productivity of a ferrule member can be improved, and the connection loss with a counter connector can be suppressed to a low level is obtained. | 01-21-2010 |
20100021111 | OPTICAL FIBER CONNECTOR AND OPTICAL FIBER CONNECTOR ASSEMBLY - The present invention provides an optical fiber connector. The optical fiber connector is used for detachably engaging to a receptacle or a repeater. The optical fiber connector comprises a plug and an optical fiber module. The plug has a first end and a second end. The optical fiber module is disposed in the plug. The optical fiber module comprises three optical fibers. The three optical fibers are separately disposed from the first end and centralizedly extended out of the second end. | 01-28-2010 |
20100046892 | SLIDE ACTUATED FIELD INSTALLABLE FIBER OPTIC CONNECTOR - A connector assembly for reversibly terminating a fiber optic cable comprising an optical fiber stub and an actuator illustratively configured for sliding along a path between a first position and a second position which illustratively serves to move one or more anvils thereby mechanically clamping the fiber optic cable proximate to the optical fiber stub. | 02-25-2010 |
20100054670 | FIELD INSTALLABLE FIBER OPTIC CONNECTOR AND INSTALLATION TOOL - A connector for reversibly terminating a cable comprising a buffer cladding surrounding an optical fiber wherein an end portion of the cable is exposed to reveal the optical fiber. The connector comprises a clamping assembly comprising a splice anvil comprising a fiber clamping surface positioned facing a member surface and overlapping a stub splicing face and an optical fiber splicing face. The clamping assembly is adapted for opening by applying a tangential force to the splice anvil, illustratively through engaging an actuating boss with a tool inserted through the opening and applying a force to the actuating boss such that the clamping surface is moved away from the member surface against a spring. | 03-04-2010 |
20100067852 | METHOD FOR ASSEMBLING A FURRULE FOR AN OPTICAL WAVE GUIDE CONNECTOR, FERRULE, WAVE GUIDE RIBBON AND TOOL FOR ASSEMBLING THE FERRULE - A method for assembling a ferrule for an optical wave guide connector, a ferrule for an optical wave guide connector, a wave guide ribbon and a tool for assembling the ferrule. The method includes aligning a first body of the ferrule with respect to an alignment body. The first body includes a longitudinal recess adapted to receive at least one wave guide ribbon. Each wave guide ribbon includes at least one optical wave guide. The method further includes aligning at least one wave guide ribbon with respect to the alignment body and inserting the at least one wave guide ribbon into the longitudinal recess of the first body. Lastly, the method further includes closing the longitudinal recess of the first body with a second body of the ferrule. | 03-18-2010 |
20110044589 | OPTICAL FERRULE - An optical ferrule butt-connected in an optical adapter, includes: a ferrule main body; a connection end face in a front surface of the main body; a pair of grooves on the connection end face of the main body; guide pin insertion holes in bottom surfaces of the respective grooves; optical fiber insertion holes in the connection end face, the holes being arranged in a line; and foreign material collecting portions at least at a pair of corresponding sides of the connection end face. The groove has a width larger than a diameter of the guide pin insertion hole. The foreign material collecting portions respectively have a wall for connecting the connection end face with a side surface of the ferrule main body to form a space for collecting a foreign material with an opposite connection end face of a corresponding optical ferrule and an inner wall of the optical adapter. | 02-24-2011 |
20110044590 | FIELD TERMINATABLE FIBER OPTIC CONNECTOR ASSEMBLY - A fiber optic connector assembly includes a connector and a carrier. The connector, defining a longitudinal bore extending through the connector and having a first end region and a second end region, includes a ferrule assembly, having an optical fiber extending through the connector, at least partially disposed in the longitudinal bore at the first end region, a tube, defining a passage and having a first end portion disposed in the longitudinal bore at the second end region and a second end region, and a spring disposed in the bore between the ferrule assembly and the tube. The carrier includes a cable end and a connector end engaged with the connector, a termination region disposed between the connector end and the cable end, a fiber support region disposed between the connector end and the termination region, and a take-up region disposed between the connector end and the fiber support region. | 02-24-2011 |
20110097044 | OPTICAL CONNECTOR AND METHOD OF ASSEMBLING OPTICAL CONNECTOR - An optical connector that is assembled onto a terminal of an optical fiber cable including tension bodies. The optical connector includes a housing, a ferrule that is provided in the housing, and a fixing cap that is mounted on the housing. The housing includes a fixing portion of which an outer peripheral surface is provided with a screw portion. While the tension bodies leading from the terminal of the optical fiber cable are interposed between the housing and the fixing cap, the fixing cap is screwed onto and fixed to the fixing portion. | 04-28-2011 |
20110150399 | OPTICAL CONNECTOR WITH REFLECTOR - Disclosed is an optical connector which terminates an optical fiber inside the optical connector. The optical connector includes a main body. The main body includes: a reflector for reflecting light; a groove portion formed in a top surface of the main body; an optical fiber insertion hole opened in the groove portion, the optical fiber being inserted in the optical fiber insertion hole; an optical fiber placement stage provided in the groove portion, a front end portion of the optical fiber being placed on the optical fiber placement stage. The groove portion includes a side surface formed to face the optical fiber insertion hole. The optical fiber placement stage is formed by projecting from the side surface of the groove portion. | 06-23-2011 |
20110150400 | OPTICAL CONNECTOR WITH REFLECTOR - Disclosed is an optical connector which terminates an optical fiber inside the optical connector. The optical connector includes a main body. The main body includes: a reflector for reflecting light; a groove portion formed in a top surface of the main body; an optical fiber insertion hole opened in the groove portion, the optical fiber being inserted in the optical fiber insertion hole; an optical fiber placement stage provided in the groove portion, a front end portion of the optical fiber being placed on the optical fiber placement stage. The groove portion includes two side surfaces which face each other in the depth direction of the optical fiber insertion hole, and the optical fiber placement stage is separated away from the two side surfaces. | 06-23-2011 |
20110299815 | OPTICAL FIBER CABLE CONNECTOR WITH INTEGRATED CABLE SPLITTING - An optical cable connector is disclosed herein. The optical cable connector includes a housing; an aperture on a side of the housing for receiving unsplit duplex optical cable; a sharp edge, disposed within the housing and positioned to split a portion of the optical cable into two optical fibers when the cable is inserted into the aperture, the fibers for carrying optical signals; and electro-optical transceivers, disposed within the housing and aligned with the two optical fibers to receive the optical signals, the transceivers configured to convert the optical signals into electrical signals. Integrating the sharp edge within the connector precludes a user from having to manually split optical cable prior to inserting the cable into the connector, thereby making the connector relatively easy to use and reducing the likelihood the user will be injured. | 12-08-2011 |
20120106900 | FIBER ASSEMBLY - A fiber assembly ( | 05-03-2012 |
20120195557 | CONNECTED OPTICAL FIBER AND METHOD FOR ASSEMBLING SAME - Provided is a connected optical fiber that is stable and has minimal connection loss even in a high-temperature or low-temperature environment, without involving an excessive amount of labor in the optical fiber connection process, and also provided is a method for assembling a connected optical fiber. The connected optical fiber includes a first optical fiber, a second optical fiber, and a mechanical splice, an end face of the first optical fiber and an end face of the second optical fiber being placed end to end and mechanically connected in the mechanical splice. In this connected optical fiber, at least one end face among the end face of the first optical fiber and the end face of the second optical fiber is formed having a convex curved surface shape in a direction angled with respect to a surface perpendicular to an axis of the optical fiber that has the end face. | 08-02-2012 |
20120257860 | OPTICAL FIBER CONNECTOR FERRULE HAVING OPEN FIBER CLAMPING GROOVES - A ferrule for an optical fiber connector having open fiber clamping grooves. The ferrule has a body having a plurality of open grooves for clamping the terminating end sections of optical fibers. At least a section of the longitudinal opening of the groove is provided with opposing lips to provide a clamping effect. The width of the longitudinal opening defined between the lips along at least a section of the grooves is narrower than the diameter of the optical fibers to create a tight fit. The grooves and the width of the longitudinal groove openings are shaped and sized to retain the fibers without any clearance to allow for movement of the fiber relative to the groove. Similar grooves may be provided in the ferrule body for alignment guide pins. The grooves are precision formed by high throughput processes, such as stamping and extrusion. | 10-11-2012 |
20130071070 | FIELD INSTALLABLE OPTICAL-FIBER CONNECTOR - A field installable optical-fiber connector at least comprises an optical-fiber splice sleeve with a hole for optical-fiber ferrule and an optical-fiber splice member containing-chamber. A first half and a second half of the optical-fiber splice member are placed in the optical-fiber splice member containing-chamber. An optical-fiber ferrule pre-provided with the connecting optical-fiber is inserted in the hole for optical-fiber ferrule. The connecting optical-fiber is butt jointed with a field optical-fiber in an optical-fiber splice groove on the first half. The first half or the second half is provided with a rib which is matched with and protrudes from a locking slot of the optical-fiber splice sleeve. An optical-fiber splice member clamp, which covers the optical-fiber splice sleeve, is provided with a channel comprising an upper part and a lower part parallel with each other. The width of the lower part is larger than that of the upper part. When the optical-fiber splice sleeve is positioned in the upper part, the wall of the channel presses the rib, so that the connecting optical-fiber and the field optical-fiber are kept in the optical-fiber splice groove. The optical-fiber connector can perform a quick field installing and dismounting without external tools. | 03-21-2013 |
20130108222 | ASSEMBLY AND PACKAGING METHOD AND SYSTEM FOR OPTICAL COMPONENTS | 05-02-2013 |
20130266271 | HIGH DENSITY MULTI-FIBER FERRULE FOR OPTICAL FIBER CONNECTOR - A ferrule for a high density optical fiber connector, supporting a first set of optical fibers of a first fiber cable and a second set of optical fibers of a second fiber cable. The ferrule supports the first and second sets of optical fibers in at least one plane. In one embodiment, the first set of optical fibers are supported in a first row of open grooves, and the second set of optical fibers are supported in a second row of open grooves. The optical fibers in the first row are staggered with respect to the optical fibers of the second row. The ferrule comprises two halves, each having an open structure that has a row of open grooves precisely formed thereon in a plane. In another embodiment, the ferrule supports the first and second sets of optical fibers in a single row, in an alternating interleaving manner. | 10-10-2013 |
20130266272 | OPTICAL FIBER CONNECTOR - An optical fiber connector includes a fixing module and an optical fiber ferrule positioned at an end of the fixing module. The optical fiber connector is used for gripping a cable including an optical fiber. The optical fiber ferrule axially defines a through hole. The optical fiber is gripped in the fixing module and is partly protruded out of the optical ferrule. When the optical fiber connector is assembled to an adapter to join with another optical fiber connector, the optical fiber is bent to elastically resist an optical fiber of the another optical fiber connector. | 10-10-2013 |
20130294732 | HERMETIC OPTICAL FIBER ALIGNMENT ASSEMBLY HAVING INTEGRATED OPTICAL ELEMENT - A hermetic optical fiber alignment assembly includes a ferrule portion having a plurality of grooves receiving the end sections of optical fibers, wherein the grooves define the location and orientation of the end sections with respect to the ferrule portion. The assembly includes an integrated optical element for coupling the input/output of an optical fiber to the opto-electronic devices in the opto-electronic module. The optical element can be in the form of a structured reflective surface. The end of the optical fiber is at a defined distance to and aligned with the structured reflective surface. The structured reflective surfaces and the fiber alignment grooves can be formed by stamping. | 11-07-2013 |
20130315542 | CONNECTOR ASSEMBLY FOR OPTICAL FIBER - A connector assembly for an optical fiber comprises a unitary connector body and a fiber ferrule. The unitary connector body has an axial ferrule channel and a transverse passage connecting the ferrule channel and the connector body outer surface. The ferrule is positioned at least partly within the ferrule channel, and has an axial fiber channel and a transverse ferrule groove on its outer surface. The ferrule is positioned so that a volume defined by the ferrule groove and the ferrule channel surface communicates with the transverse passage. The connector assembly can further comprise a retaining member positioned at least partly within the ferrule groove and at least partly within the transverse passage. The retaining member comprises hardened material that had flowed, prior to hardening, (i) through the transverse passage into the ferrule groove and (ii) into the transverse passage. | 11-28-2013 |
20140161396 | PASSIVE ALIGNMENT MULTICHANNEL PARALLEL OPTICAL SYSTEM - The invention provides an optical system, in particular, a multi-channel parallel optical transceiver system and methods of forming the same. The multi-channel parallel optical system includes a first substrate with at least one optical component mounted on its first side, a second substrate with optical fibers affixed in fiber fixing structures (grooves), the second substrate being mounted on the first side of the first substrate perpendicular to the first side of the first substrate so that the optical signal can be transmitted and received between the optical fibers and the mounted optical components with minimum loss. Passive alignment assembly is realized by using a series of alignment pins and holes and/or grooves pre-fabricated on the substrates. The optical systems may additionally include other structures to provide additional functionalities, in-line monitor photodetectors, and mechanical support or substrate elevation. | 06-12-2014 |
20140178013 | FLUTES FOR FERRULE TO FIBER BONDING - An optical connector includes a ferrule having first and second ends. At least one substantially circular channel extends between the first and second ends. The at least one channel has an inner diameter. A substantially circular optical fiber, having an outer diameter, resides within the channel. At least one groove is formed into the inner diameter of the channel, and/or at least one notch is formed into the outer diameter of the optical fiber. Epoxy resides within the at least one groove and/or at least one notch to attach the optical fiber within the channel. | 06-26-2014 |
20140205246 | HERMETIC OPTICAL FIBER ALIGNMENT ASSEMBLY - A hermetic optical fiber alignment assembly, including a first ferrule portion having a first surface provided with a plurality of grooves receiving the end sections of optical fibers, wherein the grooves define the location and orientation of the end sections with respect to the first ferrule portion, and a second ferrule portion having a second surface facing the first surface of the first ferrule, wherein the first ferrule portion is attached to the second ferrule portion with the first surface against the second surface, wherein a cavity is defined between the first ferrule portion and the second ferrule portion, wherein the cavity is wider than the grooves, and wherein a suspended section of each optical fiber is suspended in the cavity, and wherein the cavity is sealed with a sealant. The sealant extends around the suspended sections of the optical fibers within the cavity. An aperture is provided in at least one of the first ferrule portion and the second ferrule portion, exposing the cavity, wherein the sealant is feed through the aperture. In another aspect, the hermetic assembly provides optical alignment and a hermetic feedthrough for an opto-electronic module. In a further aspect, the hermetic assembly provides alignment and a terminal for access to an opto-electronic module. | 07-24-2014 |
20140270652 | FIBER PIGTAIL WITH INTEGRATED LID - A mechanism is provided for a fiber pigtail. The fiber pigtail includes a single mode fiber optic ribbon having a section of polymer ribbon removed to expose bare fibers, a fiber optic ferrule in contact with the single mode fiber optic ribbon at one distal end, and an integrated polymer lid permanently attached to the bare fibers of the single mode fiber optic ribbon at another distal end of the single mode fiber optic ribbon. | 09-18-2014 |
20150016781 | OPTICAL FIBER CONNECTOR - An optical fiber connector includes a first surface, a second surface parallel with the first surface, a third surface, and a fourth surface parallel with the third surface. A groove and a fiber hole are defined in the optical fiber connector. The groove includes a bottom surface and a side surface connected with the bottom surface. A distance between the bottom surface and the bottom of the fiber hole is b. The optical fiber connector follows the relationship: d≦b≦α/tgθ, a is equal to the length of the optical fiber extending out of the fourth surface, d is equal to the diameter of an optical fiber for being received in the fiber hole, and θ is equal to a half of an angle of a laser which is used to cut the optical fiber. | 01-15-2015 |
20150117821 | OPTICAL CONNECTOR, ELECTRONIC APPARATUS, AND OPTICAL CONNECTOR MOUNTING METHOD - An optical connector includes at least one optical fiber, and a ferrule configured to hold the optical fiber. In the optical connector, the ferrule has a hook and a presser member on a front part of a bottom face of the ferrule, and a projection on a rear part of the bottom face of the ferrule, in a connecting direction, and the optical fiber is held obliquely downward from a rear end of the ferrule toward the presser member of the ferrule. | 04-30-2015 |
20150301290 | OPTICAL WIRING PART AND ELECTRONIC DEVICE - The object of the present invention is to provide an optical wiring part which can connect the optical waveguide and another optical element with high optical coupling efficiency while inhibiting the decrease of the transmission loss, and an electronic device with high reliability including the optical wiring part, the present invention provides an optical wiring part including a tape-shaped optical waveguide and a ferrule having a penetration hole which is formed from a base end to a tip end of the ferrule, and a part of the optical waveguide in a longitudinal direction is inserted into the penetration hole, wherein at least one main surface of two main surfaces of the optical waveguide is fixed to an inner wall of the penetration hole, and there is a clearance between the inner wall of the penetration hole and two side surfaces of the optical waveguide. | 10-22-2015 |
20150338581 | Optical Connector - An optical connector includes a ferrule, a ferrule retaining member having, at its rear end portion, a fastening portion into which an optical fiber is inserted and onto which a tightening ring configured to hold a tensile strength wire and a jacket in place is tightly fastened, a housing, and a fiber insertion passage formed through the fastening portion and having an expansion space that ensures an interference avoidance gap with an outer circumference of the optical fiber inserted inside the fastening portion. | 11-26-2015 |
20150355415 | FIBER OPTIC CONNECTOR WITH FERRULE BOOT - A fiber optic connector for a plurality of optical fibers includes: a housing portion, a ferrule assembly at least partially disposed in the housing portion, a spring push positioned behind the ferrule, and a spring positioned between the spring push and ferrule. The ferrule assembly includes a ferrule defining an end face of the fiber optic connector and having a plurality of bores arranged in at least two linear rows. The ferrule assembly also includes a ferrule boot coupled to the ferrule, with the ferrule boot including a fiber alignment portion and a cover portion. The fiber alignment portion defines a first groove for a first row of the optical fibers and a second groove for a second row of the optical fibers. | 12-10-2015 |