Class / Patent application number | Description | Number of patent applications / Date published |
385080000 | Adhesively fixed | 41 |
20080285922 | Field Termination Kit - A field termination kit includes an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber. A method of using a field termination kit includes rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool. The end is pressed against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end. The end is inserted into an inner passage of an optical fiber inspection device for viewing. The end is inserted into a termination assembly. The end is terminated to an end of a second optical fiber in a termination region of the termination assembly. | 11-20-2008 |
20080298749 | Telecommunications connector protective device - A fiber optic connector assembly includes a fiber optic connector mounted to a fiber optic cable having a ferrule with an end face terminating an optical fiber. The fiber optic cable is terminated with the fiber optic connector in a clean environment protected against airborne contaminants. A seal is placed about the ferrule within the clean environment to protect the polished end face of the ferrule including the end of the optical fiber against airborne contaminants. The seal is removable to make a fiber optic communications linkage without cleaning the end face of the optical ferrule. | 12-04-2008 |
20080304794 | Optical connector - An optical connector has a ferrule, an optical fiber connector disposed at an back end of the ferrule, an internal optical fiber inserted into the ferrule and the optical fiber connector, the internal optical fiber being adapted to butt-connect at a back end face thereof to an external optical fiber to be inserted into the optical fiber connector, and a refractive index matching body attached to the back end face of the internal optical fiber. The refractive index matching body has a cross-linked and hardened cross-linkable refractive index matching agent including a stress-strain relaxation agent. | 12-11-2008 |
20080310798 | Fiber optic plug assembly with boot and crimp band - A fiber optic plug assembly of a fiber optic connector assembly is provided and generally includes a fiber optic plug mounted upon an end of a fiber optic cable; a pre-molded boot placed over the fiber optic plug and the fiber optic cable; and a crimp band mated over the pre-molded boot to secure the boot to the fiber optic cable; wherein the fiber optic plug assembly is operable to mate to a fiber optic receptacle. The plug assembly eliminates the need for an overmolded boot. Further, the present invention eliminates the need to perform a heat shrink between the buffer tube and crimp body through the internal O-ring. The plug assembly meets the standards of GR-3120-CORE while at the same time providing a simpler hardware package that can be assembled with ordinary connectorization tools. | 12-18-2008 |
20090003775 | OPTICAL COMPONENT AND ADAPTER INCLUDING THE SAME - An optical component is improved in workability during assembly operation thereof and makes it possible to easily position an optical fiber. A first ferrule is press-fitted into one end of a central hole of a connecting member, and a second ferrule is press-fitted into the other end of the central hole of the connecting member. An optical fiber is inserted through the first and second ferrules. A coating which coats an intermediate portion of the optical fiber of an optical fiber cord is accommodated in a communicating portion of the central hole of the connecting member in a manner such that the coating is brought into abutment with the first and second ferrules. | 01-01-2009 |
20090041411 | Fiber Optic Drop Cables and Preconnectorized Assemblies - A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle. | 02-12-2009 |
20090060423 | Fiber Optic Drop Cables and Preconnectorized Assemblies Having Toning Portions - A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle. | 03-05-2009 |
20090067789 | DUAL INNER DIAMETER FERRULE DEVICE AND METHOD - A fiber optic ferrule includes a body extending from a first end to a second opposite end, with the body including an axial passage extending between the first and second ends. The axial passage includes a first diameter portion having a diameter of at least 125 microns, and a second diameter portion having a diameter of at least 250 microns and less than a diameter of the buffer, the second diameter portion positioned between the first diameter and the second end. The axial passage further defines a tapered shape at the second end extending inward from the second end to the second diameter portion. A hub holds the ferrule. A method of assembling a terminated fiber optic cable is also provided. | 03-12-2009 |
20090136184 | Fiber Optic Cables and Assemblies for Fiber Toward the Subscriber Applications - Disclosed are fiber optic cables and assemblies for routing optical networks closer to the subscriber. The fiber optic cables have a robust design that is versatile by allowing use in aerial application with a pressure clamp along with use in buried and/or duct applications. Additionally, the fiber optic cables and assemblies have a relatively large slack storage capacity for excess length. Assemblies include hardened connectors and/or optical connectors such as plugs and/or receptacles suitable for outdoor plant applications attached to one or more ends of the fiber optic cables for plug and play connectivity. | 05-28-2009 |
20090257718 | OPTICAL CONNECTOR HAVING OPTICAL FIBER - In an optical connector with optical fibers in which silica glass optical fibers with resin coating layers remaining attached are connected in optical fiber openings of a ferrule made from resin, at least a part of the resin coating layer of the optical fiber is glued to an inner face of the optical fiber opening, an outer diameter of the resin coating layer of the optical fiber is less than or equal to 125 μm, and the Young's modulus of the resin coating layer is less than the Young's modulus of the ferrule, and the Young's modulus of the resin coating layer is 1500 to 10000 MPa. | 10-15-2009 |
20100027945 | Connector for Plastic Optical Fiber - A plastic optical fiber connector includes an optical fiber connector having a plate body formed therein. On the plate body, a focusing hole is formed, the focusing hole having a holding portion extending outwardly from a side thereof. With provision of the plate body, two reception spaces are formed in the optical fiber connector, with one of which having a seat body on which an optical transceiver is provided therein, wherein a transceiver terminal of the optical transceiver is bonded to the focusing hole on the plate body. Further, a wire seat is sleeved within the optical fiber connector so that the holding portion is allowed to be placed into an optical fiber guiding hole of the wire seat. | 02-04-2010 |
20100040333 | Optical fiber connector with enhanced bonding capability and method of assembling fiber - A method of assembling an optical fiber connector includes the steps of providing a ferrule with an internal through passage, and using a gas for treating a surface of the internal through passage to enhance a bonding capability of the surface. Adhesive is introduced into at least a portion of the internal through passage and at least one optical fiber is secured to the surface of the internal through passage by the adhesive. Another method includes the steps of providing the ferrule with an internal through passage including a shoulder, a window that extends through a side surface, and a cap having at least a portion inserted into the window. Adhesive is introduced into at least a portion of the internal through passage and is in engagement with the shoulder for providing an axial stop for securing at least one optical fiber with respect to the internal through passage. | 02-18-2010 |
20100080516 | Retention Bodies for Fiber Optic Cable Assemblies - Retention bodies for securing a fiber optic cable thereto for optical connectorization are disclosed along with fiber optic cable assemblies. The fiber optic cable is inserted into a passage of the retention body and secured to the same using a bonding agent and/or a mechanical element. The rear end opening of the passage is configured for inserting and securing an end portion of the fiber optic cable having at least one strength component and a portion of a cable jacket. Additionally, the retention body has a buckling chamber disposed within the retention body passage for accommodating movement of optical fiber. | 04-01-2010 |
20100272401 | Field Termination Kit - A field termination kit includes an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber. A method of using a field termination kit includes rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool. The end is pressed against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end. The end is inserted into an inner passage of an optical fiber inspection device for viewing. The end is inserted into a termination assembly. The end is terminated to an end of a second optical fiber in a termination region of the termination assembly. | 10-28-2010 |
20110194819 | CONNECTOR COMPONENT FOR OPTICAL FIBER, MANUFACTURING METHOD THEREOF AND OPTICAL MEMBER - A connector component for optical fibers has good dimensional accuracy and parallelism. The connector component includes a base material. The base material is provided with at least two holes for inserting and fixing optical fibers therein. The base material is made of quartz glass. Inner components are arranged for forming holes for inserting optical fibers in a die for forming an outer form of the connector component with a dimensional accuracy equal to or less than 2 μm. Slurry is poured into the die, the slurry including quartz powder, a resin binder, a dispersant, water and a curing agent. The poured slurry is cured and heated under vacuum so as to vitrify the cured slurry to obtain the quartz glass. | 08-11-2011 |
20120045177 | DUAL INNER DIAMETER FERRULE DEVICE AND METHOD - A fiber optic ferrule includes a body extending from a first end to a second opposite end, with the body including an axial passage extending between the first and second ends. The axial passage includes a first diameter portion having a diameter of at least 125 microns, and a second diameter portion having a diameter of at least 250 microns and less than a diameter of the buffer, the second diameter portion positioned between the first diameter and the second end. The axial passage further defines a tapered shape at the second end extending inward from the second end to the second diameter portion. A hub holds the ferrule. A method of assembling a terminated fiber optic cable is also provided. | 02-23-2012 |
20120281951 | OPTICAL FIBER CONNECTOR, OPTICAL FIBER CONNECTOR ASSEMBLING METHOD, FUSION-SPLICED PORTION REINFORCING METHOD, PIN CLAMP, CAP-ATTACHED OPTICAL FIBER CONNECTOR, OPTICAL FIBER CONNECTOR CAP, OPTICAL FIBER CONNECTOR ASSEMBLING TOOL, AND OPTICAL FIBER CONNECTOR ASSEMBLING SET - An optical fiber connector includes a ferrule, an inserted optical fiber, an external optical fiber, and a pair of reinforcing members that pinches and reinforces a fusion-spliced portion of the other end portion of the inserted optical fiber and the front end portion of the external optical fiber. The reinforcing members include adhesion layer on the inner surface thereof which comes in contact with the other end portion of the inserted optical fiber and the front end portion of the external optical fiber. The adhesion layer is depressed at the position where the inserted optical fiber and the external optical fiber come in contact with each other so as to closely adhere to the outer circumferential surfaces of the optical fibers in the fusion-spliced portion. | 11-08-2012 |
20120288238 | OPTICAL FIBRE CONNECTOR AND AN ASSEMBLY METHOD FOR THE SAME - The present invention relates to an optical fiber connector whereby an operator can easily couple optical fibers on site, and to an assembly method for the same. More specifically the invention relates to: an optical fiber connector wherein a guide ferrule bush is provided between a ferrule and a coil spring so as to be able to solve a problem whereby a ferrule optical fiber between a ferrule body and a reinforcing sleeve is bent, and a problem whereby contact between the ferrule body and the ferrule optical fiber is broken due to frequent movement, when the ferrule moves within a range of movement provided for by a resilient member due to the resilient member; and to an assembly method for the same. | 11-15-2012 |
20130004129 | Expanded beam fiber optic connector - The expanded beam, fiber optic connector includes an optical fiber, and a ferrule. The optical fiber includes a modified mode field diameter segment. The ferrule includes a recess. The optical fiber is retained by the ferrule. The modified mode field diameter segment is positioned in the recess of the ferrule. | 01-03-2013 |
20130028560 | OPTICAL FIBER ASSEMBLIES AND METHODS OF FABRICATING OPTICAL FIBER ASSEMBLIES - A ferrule assembly includes a ferrule comprising a ferrule boot insertion end and a ferrule boot defining an optical fiber channel. The optical fiber channel of the ferrule boot is shaped to receive a plurality of optical fibers therethrough. The ferrule boot includes an outer shell and a heat-activated adhesive liner is positioned within the outer shell channel and coupled to the inner surface of the outer shell. A portion of the outer shell is sized to be at least partially inserted into the ferrule boot insertion end of the ferrule. The outer shell has a thermal melting point that is greater than a thermal melting point of the heat-activated adhesive liner such that the heat-activated adhesive liner melts for adhering the plurality of optical fibers to the outer shell upon receipt of thermal energy. | 01-31-2013 |
20130028561 | METHODS FOR CENTERING OPTICAL FIBERS INSIDE A CONNECTOR FERRULE AND OPTICAL FIBER CONNECTOR - An optical fiber connector assembly includes at least one ferrule, the ferrule having a front end, at least one bore for receiving at least one optical fiber, and an optical fiber at least partially disposed in the bore, at least a portion of the at least one optical fiber being disposed in the at least one ferrule bore so that a section of the at least one fiber portion has an end face that is essentially even with the ferrule front end, a section of the optical fiber having a bulge which has a size which is larger than the bare optical fiber diameter, the fiber at least partially contacts a surface of the ferrule bore, and the contact defining a fiber-to-ferrule interface region. The fiber-to-ferrule interface region includes substantial contact between the bulge and a portion of the surface of the bore such that movement of the fiber in the bore is inhibited and the remaining portion of the optical fiber is substantially centered in the at least one bore. | 01-31-2013 |
20130089294 | DUAL INNER DIAMETER FERRULE DEVICE WITH SMOOTH INTERNAL CONTOURS AND METHOD - A fiber optic ferrule includes a body extending from a first end to a second opposite end, with the body including an axial passage extending between the first and the second ends. The axial passage includes a first diameter portion having a diameter of at least 125 microns, a second diameter portion having a diameter of at least 250 microns and less than a diameter of a buffer, and a smooth and continuous transition between the first and the second diameter portions. The second diameter portion is positioned between the first diameter portion and the second end. The axial passage further defines a tapered shape at the second end extending inward from the second end toward the second diameter portion. In certain embodiments, another smooth and continuous transition can be provided between the taper shape and the second diameter portion. In certain embodiments, the axial passage is smooth and continuous between the first and the second ends of the body. A hub holds the ferrule. A method of assembling a terminated fiber optic cable is also provided. | 04-11-2013 |
20130136401 | OPTICAL FIBER ASSEMBLIES, OPTICAL FIBER ORGANIZERS AND METHODS OF FABRICATING OPTICAL FIBER ASSEMBLIES - A ferrule assembly includes a ferrule comprising a ferrule boot insertion end and a ferrule boot. The ferrule boot includes a lower component and an upper component. The lower component of the ferrule boot includes a first grooved surface that includes a plurality of first grooves that are dimensioned to receive a plurality of optical fibers. The upper component includes a second grooved surface that includes a plurality of second grooves that are dimensioned to receive the plurality of optical fibers. In one embodiment, the lower component is coupled to the upper component such that individual ones of the plurality of first grooves are substantially aligned with individual ones of the plurality of second grooves. The lower component and the upper component also define a fiber insertion end and a ferrule insertion end of the ferrule boot. The ferrule insertion end of the ferrule boot is at least partially positioned within the ferrule at the ferrule boot insertion end. | 05-30-2013 |
20130163936 | OPTICAL FERRULE AND OPTICAL CONNECTOR - An optical ferrule and an optical connector are provided, which make it possible to reduce the labor required for an adhesive wiping operation even when the optical ferrule is small-sized. A first adhesive filling recess | 06-27-2013 |
20130209043 | FIBER OPTIC CABLE SUB-ASSEMBLIES AND METHODS OF MAKING - Fiber optic cable sub-assemblies comprise a fiber optic cable including at least one optical fiber, a cable jacket that houses the optical fiber and at least one strength member. The fiber optic cable sub-assembly further comprises a collar including an inner portion seated within a cavity of an outer portion, wherein the inner portion is attached to an end portion of the strength member of the cable, and the optical fiber extends through the collar to protrude from an outer axial end of the collar. Methods of assembling a fiber optic cable sub-assembly include providing a cable having a strength member along with a collar having an inner portion and an outer portion, attaching the inner portion to an end portion of the strength member so the optical fiber extends from an outer axial end of the collar along with methods for making cable assemblies. | 08-15-2013 |
20130315541 | Fiber Optic Connector - The present disclosure relates to a fiber optic connector and cable assembly. The fiber optic connector includes a connector body and ferrule assembly mounted in the connector body. A spring is positioned within the connector body for biasing the ferrule assembly in a forward direction. The spring has a first spring length when the ferrule assembly is in a forwardmost position. A rear housing of the connector body includes a front extension that fits inside a rear end of the spring, the front extension having a front extension length. The fiber optic connector defines a gap between the front extension and a ferrule hub of the ferrule assembly, the gap having a first dimension measured between the front extension and the ferrule hub when the ferrule assembly is in the forwardmost position, the front extension length being longer than the first dimension. | 11-28-2013 |
20140105550 | ADHESIVE COMPOSITIONS INCLUDING PARTIALLY CROSS-LINKED RESINS AND THERMOSET RESINS AND METHODS FOR USE THEREOF - An optical connector for terminating an optical fiber may include a ferrule, a optical fiber, and an adhesive composition. The ferrule may include a fiber-receiving passage defining an inner surface and the adhesive composition may be disposed within the ferrule and in contact with the inner surface of the ferrule and the optical fiber. The adhesive composition may include a partially cross-linked resin and a thermoset resin. The adhesive composition may include between about 1 to about 85 parts by weight of the thermoset resin per 100 parts by weight of the partially cross-linked resin. | 04-17-2014 |
20140147083 | CONNECTOR FOR MULTILAYERED OPTICAL WAVEGUIDE - Methods for fabricating connectors for multilayered optical waveguides, as well as apparatuses for multilayered optical waveguides that embody ferrules and connectors. The method of fabricating a connector includes the steps of: stacking in a containing unit of a ferrule, a plurality of optical waveguides that are each preliminarily formed in the shape of layers; and injecting resin or adhesive through a space lying between the plurality of optical waveguides and the containing unit of the ferrule, with the plurality of optical waveguides contained in a stacked manner so that resin or adhesive reaches each of the plurality of optical waveguides. | 05-29-2014 |
20140153880 | DEVICE AND METHOD FOR BUNDLING OPTICAL FIBERS - The subject matter disclosed herein relates to a device and method for bundling optical fibers. The device has a receiving channel with a cavity for receiving the optical fibers. A cover with a protrusion is configured to be inserted into the cavity for compression of the optical fibers. The receiving channel has at least one hole in the receiving channel or the cover configured to receive any excess adhesive resulting from the compression of the optical fibers. | 06-05-2014 |
20140233895 | FIBER-OPTIC CONNECTOR - A fiber-optic connector for connecting an optical fiber to other optical assemblies is disclosed. The fiber-optic connector includes a top plate having a window of similar refractive index and transmission index as the material of an optic fiber to be contained within the fiber-optic connector. The fiber-optic connector also includes a ferrule connected to the top plate via multiple spring-loaded screws. The ferrule includes an interface and an insert. The insert is capable of firmly gripping an optical fiber. In order to reduce Fresnel reflection losses of the fiber-optic connector, the window is pre-coated with an anti-reflective surface on the side opposite an optic fiber to be contained within the fiber-optic connector. | 08-21-2014 |
20140254989 | OPTICAL FIBER CABLE HAVING CONNECTOR AND ASSEMBLING METHOD THEREOF - An optical fiber cable having an optical connector, includes: an optical connector assembled on a tip portion of an optical fiber cable, including a ferrule in which an optical fiber protruding from a terminal of the optical fiber cable is inserted and fixed; and a reinforced portion formed by heating and shrinking a heat-shrinkable tube and by solidifying a hot-melt adhesive of an inner portion of the heat-shrinkable tube after melting the hot-melt adhesive so as to integrate a rear end portion of the ferrule, the tip portion of the optical fiber cable which is disposed so as to be separated in a rear side of the ferrule, and the heat-shrinkable tube which accommodates the rear end portion of the ferrule and the tip portion of the optical fiber cable and in which the hot-melt adhesive is disposed in the inner portion of the heat-shrinkable tube. | 09-11-2014 |
20150071592 | OPTICAL FIBER CONNECTOR AND CABLE ASSEMBLY WITH DUAL DIAMETER CRIMP SLEEVE - Connectorizing an optical fiber cable includes mounting at least part of a connector housing about a ferrule assembly; positioning a crimp sleeve so that a distal section of the crimp sleeve is disposed about a proximal end of the connector housing and a proximal section of the crimp sleeve is disposed about a jacketed portion of the optical fiber cable; applying a first force to the distal section of the crimp sleeve to tighten the distal section of the crimp sleeve against the proximal end of the connector housing; and applying a second force to the proximal section of the crimp sleeve to tighten the proximal section of the crimp sleeve against the jacketed portion of the optical fiber cable. Adhesive may be added to the proximal section of the crimp sleeve through an aperture. | 03-12-2015 |
20150093080 | OPTICAL CONNECTORS WITH INORGANIC ADHESIVES AND METHODS FOR MAKING THE SAME - One embodiment of the disclosure relates to an optical connector. The optical connector may include a ferrule, a waveguide, and an inorganic adhesive composition. The ferrule may include a fiber-receiving passage defining an inner surface. The inorganic adhesive composition may be disposed within the ferrule and in contact with the inner surface of the ferrule and the waveguide. The inorganic adhesive composition may include at least about 50% by weight of metal oxide. | 04-02-2015 |
20150098679 | OPTICAL CONNECTOR AND FERRULE ADHESION SYSTEM INCLUDING ADHESIVE COMPOSITION, AND RELATED METHODS - An optical connector for terminating an optical fiber includes a ferrule, an optical fiber, and an adhesive composition disposed within a fiber-receiving passage of the ferrule. The adhesive composition, which is in contact with the inner surface of the ferrule and the optical fiber, includes a partially cross-linked resin that is a polymer and a coupling agent that chemically bonds the partially cross-linked resin to an inorganic surface of at least one of the optical fiber and the ferrule. | 04-09-2015 |
20150309268 | OPTICAL FIBER AND COMPOSITE INORGANIC FERRULE ASSEMBLIES - A pre-terminated optical fiber assembly with a ferrule having front and rear opposed faces and at least one fiber bore defined longitudinally therethrough includes a glass optical fiber is disposed within the at least one fiber bore with the fiber fused to the ferrule at a location at least 1 mm deep inside the bore. A method for fusing is also disclosed. The ferrule | 10-29-2015 |
20160062040 | OPTICAL FIBER ASSEMBLY - An optical fiber assembly includes a ferrule and a plurality of optical fibers. Each optical fiber has an end portion positioned generally adjacent a front face of the ferrule. The end portion of each optical fiber has an end face for engaging a mating optical component and an enlarged portion with at least a portion thereof engaging the ferrule generally adjacent the front face of the ferrule. A method of fabricating an optical fiber assembly is also disclosed. | 03-03-2016 |
20160085033 | Ferrule for an Optical Connector - Ferrule for an optical connector, an optical connector containing such a ferrule, and a method for assembling such a ferrule. The ferrule includes a base, at least one cover, at least one fiber section running through a channel between the base and the cover from a cable connection side to an opposite contact face exposing distal ends of the fiber sections. The fibers are adhered to the base and/or to the cover at a bonding section at a distance from the contact face. | 03-24-2016 |
20160124159 | FIBER OPTIC CONNECTOR - The present disclosure relates to a fiber optic connector and cable assembly. The fiber optic connector includes a connector body and ferrule assembly mounted in the connector body. A spring is positioned within the connector body for biasing the ferrule assembly in a forward direction. The spring has a first spring length when the ferrule assembly is in a forwardmost position. A rear housing of the connector body includes a front extension that fits inside a rear end of the spring, the front extension having a front extension length. The fiber optic connector defines a gap between the front extension and a ferrule hub of the ferrule assembly, the gap having a first dimension measured between the front extension and the ferrule hub when the ferrule assembly is in the forwardmost position, the front extension length being longer than the first dimension. | 05-05-2016 |
20160131850 | OPTICAL RECEPTACLE - According to an aspect of the invention, an optical receptacle, comprising: a fiber stub including an optical fiber, a ferrule, and an elastic member, the optical fiber including cladding and a core conducting light, the ferrule having a through-hole fixing the optical fiber, the elastic member fixing the optical fiber in the ferrule; and a holder holding the fiber stub, the optical fiber being disposed inside the through-hole over an entire region of the optical fiber, the optical fiber including a portion, a core diameter and a fiber outer diameter in the portion decreasing gradually toward an end surface of the ferrule on a side opposite to a side to be optically connected to a plug ferrule, the elastic member being filled into a space between the optical fiber and an inner wall of the through-hole. By making the core small at the optical element side end surface of the optical fiber while contributing to shortening the optical module total length, the strength of the deformable portion of the optical fiber can be ensured; the occurrence of breaking and cracks can be prevented; and the decrease of the coupling efficiency can be prevented by suppressing the movement of the optical fiber when using the optical module. | 05-12-2016 |
20160154188 | CONNECTOR FOR MULTILAYERED OPTICAL WAVEGUIDE | 06-02-2016 |
20160178850 | FIBER OPTIC CONNECTOR | 06-23-2016 |